# Copyright 2021 Google AI and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest
from functools import cached_property

from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_python import AddedToken

from ...test_tokenization_common import TokenizerTesterMixin


class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    from_pretrained_id = "nielsr/canine-s"
    tokenizer_class = CanineTokenizer
    test_slow_tokenizer = True
    test_rust_tokenizer = False

    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        tokenizer = CanineTokenizer()
        tokenizer.save_pretrained(cls.tmpdirname)

    @cached_property
    def canine_tokenizer(self):
        return CanineTokenizer.from_pretrained("google/canine-s")

    @classmethod
    def get_tokenizer(cls, pretrained_name=None, **kwargs) -> CanineTokenizer:
        pretrained_name = pretrained_name or cls.tmpdirname
        tokenizer = cls.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
        tokenizer._unicode_vocab_size = 1024
        return tokenizer

    @require_torch
    def test_prepare_batch_integration(self):
        tokenizer = self.canine_tokenizer
        src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
        expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0]  # fmt: skip
        batch = tokenizer(src_text, padding=True, return_tensors="pt")
        self.assertIsInstance(batch, BatchEncoding)

        result = list(batch.input_ids.numpy()[0])

        self.assertListEqual(expected_src_tokens, result)

        self.assertEqual((2, 39), batch.input_ids.shape)
        self.assertEqual((2, 39), batch.attention_mask.shape)

    @require_torch
    def test_encoding_keys(self):
        tokenizer = self.canine_tokenizer
        src_text = ["Once there was a man.", "He wrote a test in HuggingFace Transformers."]
        batch = tokenizer(src_text, padding=True, return_tensors="pt")
        # check if input_ids, attention_mask and token_type_ids are returned
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertIn("token_type_ids", batch)

    @require_torch
    def test_max_length_integration(self):
        tokenizer = self.canine_tokenizer
        tgt_text = [
            "What's the weater?",
            "It's about 25 degrees.",
        ]
        targets = tokenizer(
            text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt"
        )
        self.assertEqual(32, targets["input_ids"].shape[1])

    # cannot use default save_and_load_tokenizer test method because tokenizer has no vocab
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertNotEqual(tokenizer.model_max_length, 42)

        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00e9d,running"
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)

                shutil.rmtree(tmpdirname)

        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00e9d,running"

                extra_special_tokens = tokenizer.extra_special_tokens

                # We can add a new special token for Canine as follows:
                new_extra_special_token = chr(0xE007)
                extra_special_tokens.append(new_extra_special_token)
                tokenizer.add_special_tokens(
                    {"extra_special_tokens": extra_special_tokens}, replace_extra_special_tokens=False
                )
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)
                self.assertIn(new_extra_special_token, after_tokenizer.extra_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

    def test_add_special_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)

                # a special token for Canine can be defined as follows:
                SPECIAL_TOKEN = 0xE005
                special_token = chr(SPECIAL_TOKEN)

                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)

                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)

                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)

                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)

    def test_tokenize_special_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                SPECIAL_TOKEN_1 = chr(0xE005)
                SPECIAL_TOKEN_2 = chr(0xE006)
                tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
                tokenizer.add_special_tokens({"extra_special_tokens": [SPECIAL_TOKEN_2]})

                token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
                token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)

                self.assertEqual(len(token_1), 1)
                self.assertEqual(len(token_2), 1)
                self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
                self.assertEqual(token_2[0], SPECIAL_TOKEN_2)

    @require_tokenizers
    def test_added_token_serializable(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # a special token for Canine can be defined as follows:
                NEW_TOKEN = 0xE006
                new_token = chr(NEW_TOKEN)

                new_token = AddedToken(new_token, lstrip=True)
                tokenizer.add_special_tokens({"extra_special_tokens": [new_token]})

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer.from_pretrained(tmp_dir_name)

    @require_tokenizers
    def test_encode_decode_with_spaces(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input = "hello world"
                if self.space_between_special_tokens:
                    output = "[CLS] hello world [SEP]"
                else:
                    output = input
                encoded = tokenizer.encode(input, add_special_tokens=False)
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
                self.assertIn(decoded, [output, output.lower()])

    # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab
    def test_tokenizers_common_ids_setters(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]

        token_to_test_setters = "a"
        token_id_to_test_setters = ord(token_to_test_setters)

        for attr in attributes_list:
            setattr(tokenizer, attr + "_id", None)
            self.assertEqual(getattr(tokenizer, attr), None)
            self.assertEqual(getattr(tokenizer, attr + "_id"), None)

            setattr(tokenizer, attr + "_id", token_id_to_test_setters)
            self.assertEqual(getattr(tokenizer, attr), token_to_test_setters)
            self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters)

        setattr(tokenizer, "extra_special_tokens_ids", [])
        self.assertListEqual(getattr(tokenizer, "extra_special_tokens"), [])
        self.assertListEqual(getattr(tokenizer, "extra_special_tokens_ids"), [])

        additional_special_token_id = 0xE006
        additional_special_token = chr(additional_special_token_id)
        setattr(tokenizer, "extra_special_tokens_ids", [additional_special_token_id])
        self.assertListEqual(getattr(tokenizer, "extra_special_tokens"), [additional_special_token])
        self.assertListEqual(getattr(tokenizer, "extra_special_tokens_ids"), [additional_special_token_id])

    @unittest.skip(reason="tokenizer has a fixed vocab_size (namely all possible unicode code points)")
    def test_add_tokens_tokenizer(self):
        pass

    # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point
    # ("b" and "B" for example have different Unicode code points)
    @unittest.skip(reason="CanineTokenizer does not support do_lower_case = True")
    def test_added_tokens_do_lower_case(self):
        pass

    @unittest.skip(reason="CanineModel does not support the get_input_embeddings nor the get_vocab method")
    def test_np_encode_plus_sent_to_model(self):
        pass

    @unittest.skip(reason="CanineModel does not support the get_input_embeddings nor the get_vocab method")
    def test_torch_encode_plus_sent_to_model(self):
        pass

    @unittest.skip(reason="CanineTokenizer does not have vocabulary")
    def test_get_vocab(self):
        pass

    @unittest.skip(reason="inputs cannot be pretokenized since ids depend on whole input string")
    def test_pretokenized_inputs(self):
        pass

    @unittest.skip(reason="CanineTokenizer does not have vocabulary")
    def test_conversion_reversible(self):
        pass
