# Copyright 2018 Microsoft Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

from transformers import DebertaV2Config, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        DebertaV2ForMaskedLM,
        DebertaV2ForMultipleChoice,
        DebertaV2ForQuestionAnswering,
        DebertaV2ForSequenceClassification,
        DebertaV2ForTokenClassification,
        DebertaV2Model,
    )


class DebertaV2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        relative_attention=False,
        position_biased_input=True,
        pos_att_type="None",
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.relative_attention = relative_attention
        self.position_biased_input = position_biased_input
        self.pos_att_type = pos_att_type
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return DebertaV2Config(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            relative_attention=self.relative_attention,
            position_biased_input=self.position_biased_input,
            pos_att_type=self.pos_att_type,
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result.loss.size()), [])

    def create_and_check_deberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DebertaV2Model(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0]
        sequence_output = model(input_ids, token_type_ids=token_type_ids)[0]
        sequence_output = model(input_ids)[0]

        self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size])

    def create_and_check_deberta_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DebertaV2ForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)

        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_deberta_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = DebertaV2ForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_deberta_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = DebertaV2ForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def create_and_check_deberta_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DebertaV2ForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

    def create_and_check_deberta_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DebertaV2ForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        result = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class DebertaV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            DebertaV2Model,
            DebertaV2ForMaskedLM,
            DebertaV2ForSequenceClassification,
            DebertaV2ForTokenClassification,
            DebertaV2ForQuestionAnswering,
            DebertaV2ForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": DebertaV2Model,
            "fill-mask": DebertaV2ForMaskedLM,
            "question-answering": DebertaV2ForQuestionAnswering,
            "text-classification": DebertaV2ForSequenceClassification,
            "token-classification": DebertaV2ForTokenClassification,
            "zero-shot": DebertaV2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )

    is_encoder_decoder = False

    def setUp(self):
        self.model_tester = DebertaV2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DebertaV2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_deberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_model(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deberta_for_multiple_choice(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model_name = "microsoft/deberta-v2-xlarge"
        model = DebertaV2Model.from_pretrained(model_name)
        self.assertIsNotNone(model)


@require_torch
@require_sentencepiece
@require_tokenizers
class DebertaV2ModelIntegrationTest(unittest.TestCase):
    @unittest.skip(reason="Model not available yet")
    def test_inference_masked_lm(self):
        pass

    @slow
    def test_inference_no_head(self):
        model = DebertaV2Model.from_pretrained("microsoft/deberta-v2-xlarge")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
        with torch.no_grad():
            output = model(input_ids, attention_mask=attention_mask)[0]
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]]
        )
        torch.testing.assert_close(output[:, 1:4, 1:4], expected_slice, rtol=1e-4, atol=1e-4)
