# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Deformable DETR model."""

import inspect
import math
import unittest
from functools import cached_property

from transformers import DeformableDetrConfig, ResNetConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
    require_timm,
    require_torch,
    require_torch_accelerator,
    require_torch_bf16,
    require_vision,
    slow,
    torch_device,
)

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import DeformableDetrForObjectDetection, DeformableDetrModel


if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class DeformableDetrModelTester:
    def __init__(
        self,
        parent,
        batch_size=8,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=8,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        num_queries=12,
        num_channels=3,
        image_size=196,
        n_targets=8,
        num_labels=91,
        num_feature_levels=4,
        encoder_n_points=2,
        decoder_n_points=6,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_queries = num_queries
        self.num_channels = num_channels
        self.image_size = image_size
        self.n_targets = n_targets
        self.num_labels = num_labels
        self.num_feature_levels = num_feature_levels
        self.encoder_n_points = encoder_n_points
        self.decoder_n_points = decoder_n_points

        # we also set the expected seq length for both encoder and decoder
        self.encoder_seq_length = (
            math.ceil(self.image_size / 8) ** 2
            + math.ceil(self.image_size / 16) ** 2
            + math.ceil(self.image_size / 32) ** 2
            + math.ceil(self.image_size / 64) ** 2
        )
        self.decoder_seq_length = self.num_queries

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device)

        labels = None
        if self.use_labels:
            # labels is a list of Dict (each Dict being the labels for a given example in the batch)
            labels = []
            for i in range(self.batch_size):
                target = {}
                target["class_labels"] = torch.randint(
                    high=self.num_labels, size=(self.n_targets,), device=torch_device
                )
                target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
                target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device)
                labels.append(target)

        config = self.get_config()
        return config, pixel_values, pixel_mask, labels

    def get_config(self):
        resnet_config = ResNetConfig(
            num_channels=3,
            embeddings_size=10,
            hidden_sizes=[10, 20, 30, 40],
            depths=[1, 1, 2, 1],
            hidden_act="relu",
            num_labels=3,
            out_features=["stage2", "stage3", "stage4"],
            out_indices=[2, 3, 4],
        )
        return DeformableDetrConfig(
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            num_queries=self.num_queries,
            num_labels=self.num_labels,
            num_feature_levels=self.num_feature_levels,
            encoder_n_points=self.encoder_n_points,
            decoder_n_points=self.decoder_n_points,
            use_timm_backbone=False,
            backbone=None,
            backbone_config=resnet_config,
            use_pretrained_backbone=False,
        )

    def prepare_config_and_inputs_for_common(self):
        config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
        inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
        return config, inputs_dict

    def create_and_check_deformable_detr_model(self, config, pixel_values, pixel_mask, labels):
        model = DeformableDetrModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
        result = model(pixel_values)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size))

    def create_and_check_deformable_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
        model = DeformableDetrForObjectDetection(config=config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
        result = model(pixel_values)

        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))

        result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)

        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))


@require_torch
class DeformableDetrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (DeformableDetrModel, DeformableDetrForObjectDetection) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"image-feature-extraction": DeformableDetrModel, "object-detection": DeformableDetrForObjectDetection}
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True

    test_missing_keys = False
    test_torch_exportable = True

    # special case for head models
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DeformableDetrForObjectDetection":
                labels = []
                for i in range(self.model_tester.batch_size):
                    target = {}
                    target["class_labels"] = torch.ones(
                        size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
                    )
                    target["boxes"] = torch.ones(
                        self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
                    )
                    target["masks"] = torch.ones(
                        self.model_tester.n_targets,
                        self.model_tester.image_size,
                        self.model_tester.image_size,
                        device=torch_device,
                        dtype=torch.float,
                    )
                    labels.append(target)
                inputs_dict["labels"] = labels

        return inputs_dict

    def setUp(self):
        self.model_tester = DeformableDetrModelTester(self)
        self.config_tester = ConfigTester(
            self,
            config_class=DeformableDetrConfig,
            has_text_modality=False,
            common_properties=["num_channels", "d_model", "encoder_attention_heads", "decoder_attention_heads"],
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_deformable_detr_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deformable_detr_model(*config_and_inputs)

    def test_deformable_detr_object_detection_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_deformable_detr_object_detection_head_model(*config_and_inputs)

    @unittest.skip(reason="Deformable DETR does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Deformable DETR does not use inputs_embeds")
    def test_inputs_embeds_matches_input_ids(self):
        pass

    @unittest.skip(reason="Deformable DETR does not have a get_input_embeddings method")
    def test_model_get_set_embeddings(self):
        pass

    @unittest.skip(reason="Deformable DETR is not a generative model")
    def test_generate_without_input_ids(self):
        pass

    @unittest.skip(reason="Deformable DETR does not use token embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.encoder_n_points,
                ],
            )
            out_len = len(outputs)

            correct_outlen = 8

            # loss is at first position
            if "labels" in inputs_dict:
                correct_outlen += 1  # loss is added to beginning
            # Object Detection model returns pred_logits and pred_boxes
            if model_class.__name__ == "DeformableDetrForObjectDetection":
                correct_outlen += 2

            self.assertEqual(out_len, correct_outlen)

            # decoder attentions
            decoder_attentions = outputs.decoder_attentions
            self.assertIsInstance(decoder_attentions, (list, tuple))
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries],
            )

            # cross attentions
            cross_attentions = outputs.cross_attentions
            self.assertIsInstance(cross_attentions, (list, tuple))
            self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(cross_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.decoder_n_points,
                ],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_feature_levels,
                    self.model_tester.encoder_n_points,
                ],
            )

    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (list, tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            print("Model class:", model_class)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

    def test_retain_grad_hidden_states_attentions(self):
        # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        # we take the second output since last_hidden_state is the second item
        output = outputs[1]

        encoder_hidden_states = outputs.encoder_hidden_states[0]
        encoder_attentions = outputs.encoder_attentions[0]
        encoder_hidden_states.retain_grad()
        encoder_attentions.retain_grad()

        decoder_attentions = outputs.decoder_attentions[0]
        decoder_attentions.retain_grad()

        cross_attentions = outputs.cross_attentions[0]
        cross_attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(encoder_hidden_states.grad)
        self.assertIsNotNone(encoder_attentions.grad)
        self.assertIsNotNone(decoder_attentions.grad)
        self.assertIsNotNone(cross_attentions.grad)

    def test_forward_auxiliary_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.auxiliary_loss = True

        # only test for object detection and segmentation model
        for model_class in self.all_model_classes[1:]:
            model = model_class(config)
            model.to(torch_device)

            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

            outputs = model(**inputs)

            self.assertIsNotNone(outputs.auxiliary_outputs)
            self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = ["pixel_values", "pixel_mask", "decoder_attention_mask"]
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
            else:
                expected_arg_names = ["pixel_values", "pixel_mask"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_different_timm_backbone(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # let's pick a random timm backbone
        config.backbone = "tf_mobilenetv3_small_075"
        config.backbone_config = None
        config.use_timm_backbone = True
        config.backbone_kwargs = {"out_indices": [1, 2, 3, 4]}

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if model_class.__name__ == "DeformableDetrForObjectDetection":
                expected_shape = (
                    self.model_tester.batch_size,
                    self.model_tester.num_queries,
                    self.model_tester.num_labels,
                )
                self.assertEqual(outputs.logits.shape, expected_shape)
                # Confirm out_indices was propagated to backbone
                self.assertEqual(len(model.model.backbone.conv_encoder.intermediate_channel_sizes), 4)
            else:
                # Confirm out_indices was propagated to backbone
                self.assertEqual(len(model.backbone.conv_encoder.intermediate_channel_sizes), 4)

            self.assertTrue(outputs)

    def test_hf_backbone(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Load a pretrained HF checkpoint as backbone
        config.backbone = "microsoft/resnet-18"
        config.backbone_config = None
        config.use_timm_backbone = False
        config.use_pretrained_backbone = True
        config.backbone_kwargs = {"out_indices": [1, 2, 3, 4]}

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if model_class.__name__ == "DeformableDetrForObjectDetection":
                expected_shape = (
                    self.model_tester.batch_size,
                    self.model_tester.num_queries,
                    self.model_tester.num_labels,
                )
                self.assertEqual(outputs.logits.shape, expected_shape)
                # Confirm out_indices was propagated to backbone
                self.assertEqual(len(model.model.backbone.conv_encoder.intermediate_channel_sizes), 4)
            else:
                # Confirm out_indices was propagated to backbone
                self.assertEqual(len(model.backbone.conv_encoder.intermediate_channel_sizes), 4)

            self.assertTrue(outputs)

    def test_two_stage_training(self):
        model_class = DeformableDetrForObjectDetection
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
        config.two_stage = True
        config.auxiliary_loss = True
        config.with_box_refine = True

        model = model_class(config)
        model.to(torch_device)
        model.train()
        inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
        loss = model(**inputs).loss
        loss.backward()

    def create_and_check_model_fp16_forward(self):
        model_class = DeformableDetrForObjectDetection
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        model = model_class(config)
        model.to(torch_device)
        model.half()
        model.eval()
        inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
        output = model(**inputs)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())

    @require_torch_bf16
    def create_and_check_model_bf16_forward(self):
        model_class = DeformableDetrForObjectDetection
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        model = model_class(config, dtype=torch.bfloat16)
        model.to(torch_device)
        model.eval()
        inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
        output = model(**inputs)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())


TOLERANCE = 1e-4


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_timm
@require_vision
@slow
class DeformableDetrModelIntegrationTests(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("SenseTime/deformable-detr") if is_vision_available() else None

    def test_inference_object_detection_head(self):
        model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
        pixel_values = encoding["pixel_values"].to(torch_device)
        pixel_mask = encoding["pixel_mask"].to(torch_device)

        with torch.no_grad():
            outputs = model(pixel_values, pixel_mask)

        expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels))
        self.assertEqual(outputs.logits.shape, expected_shape_logits)

        expected_logits = torch.tensor(
            [
                [-9.6645, -4.3449, -5.8705],
                [-9.7035, -3.8504, -5.0724],
                [-10.5634, -5.3379, -7.5116],
            ]
        ).to(torch_device)
        expected_boxes = torch.tensor(
            [
                [0.8693, 0.2290, 0.2492],
                [0.3150, 0.5489, 0.5845],
                [0.5563, 0.7580, 0.8518],
            ]
        ).to(torch_device)

        torch.testing.assert_close(outputs.logits[0, :3, :3], expected_logits, rtol=2e-4, atol=2e-4)

        expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
        self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
        torch.testing.assert_close(outputs.pred_boxes[0, :3, :3], expected_boxes, rtol=2e-4, atol=2e-4)

        # verify postprocessing
        results = image_processor.post_process_object_detection(
            outputs, threshold=0.3, target_sizes=[image.size[::-1]]
        )[0]
        expected_scores = torch.tensor([0.7999, 0.7895, 0.6332, 0.4719, 0.4382]).to(torch_device)
        expected_labels = [17, 17, 75, 75, 63]
        expected_slice_boxes = torch.tensor([16.5028, 52.8391, 318.2544, 470.7841]).to(torch_device)

        self.assertEqual(len(results["scores"]), 5)
        torch.testing.assert_close(results["scores"], expected_scores, rtol=2e-4, atol=2e-4)
        self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
        torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes, rtol=2e-4, atol=2e-4)

    def test_inference_object_detection_head_with_box_refine_two_stage(self):
        model = DeformableDetrForObjectDetection.from_pretrained(
            "SenseTime/deformable-detr-with-box-refine-two-stage"
        ).to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
        pixel_values = encoding["pixel_values"].to(torch_device)
        pixel_mask = encoding["pixel_mask"].to(torch_device)

        with torch.no_grad():
            outputs = model(pixel_values, pixel_mask)

        expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels))
        self.assertEqual(outputs.logits.shape, expected_shape_logits)

        expected_logits = torch.tensor(
            [
                [-6.7108, -4.3213, -6.3777],
                [-8.9014, -6.1799, -6.7240],
                [-6.9315, -4.4735, -6.2298],
            ]
        ).to(torch_device)
        expected_boxes = torch.tensor(
            [
                [0.2583, 0.5499, 0.4683],
                [0.7652, 0.9068, 0.4882],
                [0.5490, 0.2763, 0.0564],
            ]
        ).to(torch_device)

        torch.testing.assert_close(outputs.logits[0, :3, :3], expected_logits, rtol=2e-4, atol=2e-4)

        expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
        self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
        torch.testing.assert_close(outputs.pred_boxes[0, :3, :3], expected_boxes, rtol=2e-4, atol=2e-4)

    @require_torch_accelerator
    def test_inference_object_detection_head_equivalence_cpu_accelerator(self):
        image_processor = self.default_image_processor
        image = prepare_img()
        encoding = image_processor(images=image, return_tensors="pt")
        pixel_values = encoding["pixel_values"]
        pixel_mask = encoding["pixel_mask"]

        # 1. run model on CPU
        model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr-single-scale")

        with torch.no_grad():
            cpu_outputs = model(pixel_values, pixel_mask)

        # 2. run model on accelerator
        model.to(torch_device)

        with torch.no_grad():
            gpu_outputs = model(pixel_values.to(torch_device), pixel_mask.to(torch_device))

        # 3. assert equivalence
        # (on A10, the differences get larger than on T4)
        for key in cpu_outputs:
            torch.testing.assert_close(cpu_outputs[key], gpu_outputs[key].cpu(), atol=2e-2, rtol=2e-2)

        expected_logits = torch.tensor(
            [
                [-9.9051, -4.2541, -6.4852],
                [-9.6947, -4.0854, -6.8033],
                [-10.0665, -5.8470, -7.7003],
            ]
        )
        assert torch.allclose(cpu_outputs.logits[0, :3, :3], expected_logits, atol=2e-4)
