# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available

from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

    from transformers.models.grounding_dino.modeling_grounding_dino import GroundingDinoObjectDetectionOutput

if is_vision_available():
    from PIL import Image

    from transformers import GroundingDinoImageProcessor

    if is_torchvision_available():
        from transformers import GroundingDinoImageProcessorFast


class GroundingDinoImageProcessingTester:
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
    ):
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.num_queries = 5
        self.embed_dim = 5

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_processor_dict with DeformableDetr->GroundingDino
    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
        }

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.get_expected_values with DeformableDetr->GroundingDino
    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to GroundingDinoImageProcessor,
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            elif isinstance(image, np.ndarray):
                h, w = image.shape[0], image.shape[1]
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
            elif w > h:
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
            else:
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.expected_output_image_shape with DeformableDetr->GroundingDino
    def expected_output_image_shape(self, images):
        height, width = self.get_expected_values(images, batched=True)
        return self.num_channels, height, width

    def get_fake_grounding_dino_output(self):
        torch.manual_seed(42)
        return GroundingDinoObjectDetectionOutput(
            pred_boxes=torch.rand(self.batch_size, self.num_queries, 4),
            logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim),
        )

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTester.prepare_image_inputs with DeformableDetr->GroundingDino
    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )


@require_torch
@require_vision
class GroundingDinoImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
    image_processing_class = GroundingDinoImageProcessor if is_vision_available() else None
    fast_image_processing_class = GroundingDinoImageProcessorFast if is_torchvision_available() else None

    def setUp(self):
        super().setUp()
        self.image_processor_tester = GroundingDinoImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_properties with DeformableDetr->GroundingDino
    def test_image_processor_properties(self):
        for image_processing_class in self.image_processor_list:
            image_processing = image_processing_class(**self.image_processor_dict)
            self.assertTrue(hasattr(image_processing, "image_mean"))
            self.assertTrue(hasattr(image_processing, "image_std"))
            self.assertTrue(hasattr(image_processing, "do_normalize"))
            self.assertTrue(hasattr(image_processing, "do_resize"))
            self.assertTrue(hasattr(image_processing, "do_rescale"))
            self.assertTrue(hasattr(image_processing, "do_pad"))
            self.assertTrue(hasattr(image_processing, "size"))

    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_image_processor_from_dict_with_kwargs with DeformableDetr->GroundingDino
    def test_image_processor_from_dict_with_kwargs(self):
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class.from_dict(self.image_processor_dict)
            self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
            self.assertEqual(image_processor.do_pad, True)

            image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42)
            self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 1333})

    def test_post_process_object_detection(self):
        for image_processing_class in self.image_processor_list:
            image_processor = image_processing_class(**self.image_processor_dict)
            outputs = self.image_processor_tester.get_fake_grounding_dino_output()
            results = image_processor.post_process_object_detection(outputs, threshold=0.0)

            self.assertEqual(len(results), self.image_processor_tester.batch_size)
            self.assertEqual(list(results[0].keys()), ["scores", "labels", "boxes"])
            self.assertEqual(results[0]["boxes"].shape, (self.image_processor_tester.num_queries, 4))
            self.assertEqual(results[0]["scores"].shape, (self.image_processor_tester.num_queries,))

            expected_scores = torch.tensor([0.7050, 0.7222, 0.7222, 0.6829, 0.7220])
            torch.testing.assert_close(results[0]["scores"], expected_scores, rtol=1e-4, atol=1e-4)

            expected_box_slice = torch.tensor([0.6908, 0.4354, 1.0737, 1.3947])
            torch.testing.assert_close(results[0]["boxes"][0], expected_box_slice, rtol=1e-4, atol=1e-4)

    @slow
    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_detection_annotations with DeformableDetr->GroundingDino
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        for image_processing_class in self.image_processor_list:
            # encode them
            image_processing = image_processing_class()
            encoding = image_processing(images=image, annotations=target, return_tensors="pt")

            # verify pixel values
            expected_shape = torch.Size([1, 3, 800, 1066])
            self.assertEqual(encoding["pixel_values"].shape, expected_shape)

            expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
            torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-4, atol=1e-4)

            # verify area
            expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
            torch.testing.assert_close(encoding["labels"][0]["area"], expected_area)
            # verify boxes
            expected_boxes_shape = torch.Size([6, 4])
            self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
            expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
            torch.testing.assert_close(encoding["labels"][0]["boxes"][0], expected_boxes_slice, rtol=1e-3, atol=1e-3)
            # verify image_id
            expected_image_id = torch.tensor([39769])
            torch.testing.assert_close(encoding["labels"][0]["image_id"], expected_image_id)
            # verify is_crowd
            expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
            torch.testing.assert_close(encoding["labels"][0]["iscrowd"], expected_is_crowd)
            # verify class_labels
            expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
            torch.testing.assert_close(encoding["labels"][0]["class_labels"], expected_class_labels)
            # verify orig_size
            expected_orig_size = torch.tensor([480, 640])
            torch.testing.assert_close(encoding["labels"][0]["orig_size"], expected_orig_size)
            # verify size
            expected_size = torch.tensor([800, 1066])
            torch.testing.assert_close(encoding["labels"][0]["size"], expected_size)

    @slow
    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_detection_annotations with Detr->GroundingDino
    def test_batched_coco_detection_annotations(self):
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt") as f:
            target = json.loads(f.read())

        annotations_0 = {"image_id": 39769, "annotations": target}
        annotations_1 = {"image_id": 39769, "annotations": target}

        # Adjust the bounding boxes for the resized image
        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotations_1["annotations"])):
            coords = annotations_1["annotations"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotations_1["annotations"][i]["bbox"] = new_bbox

        images = [image_0, image_1]
        annotations = [annotations_0, annotations_1]

        for image_processing_class in self.image_processor_list:
            image_processing = image_processing_class()
            encoding = image_processing(
                images=images,
                annotations=annotations,
                return_segmentation_masks=True,
                return_tensors="pt",  # do_convert_annotations=True
            )

            # Check the pixel values have been padded
            postprocessed_height, postprocessed_width = 800, 1066
            expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
            self.assertEqual(encoding["pixel_values"].shape, expected_shape)

            # Check the bounding boxes have been adjusted for padded images
            self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
            self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
            expected_boxes_0 = torch.tensor(
                [
                    [0.6879, 0.4609, 0.0755, 0.3691],
                    [0.2118, 0.3359, 0.2601, 0.1566],
                    [0.5011, 0.5000, 0.9979, 1.0000],
                    [0.5010, 0.5020, 0.9979, 0.9959],
                    [0.3284, 0.5944, 0.5884, 0.8112],
                    [0.8394, 0.5445, 0.3213, 0.9110],
                ]
            )
            expected_boxes_1 = torch.tensor(
                [
                    [0.4130, 0.2765, 0.0453, 0.2215],
                    [0.1272, 0.2016, 0.1561, 0.0940],
                    [0.3757, 0.4933, 0.7488, 0.9865],
                    [0.3759, 0.5002, 0.7492, 0.9955],
                    [0.1971, 0.5456, 0.3532, 0.8646],
                    [0.5790, 0.4115, 0.3430, 0.7161],
                ]
            )
            torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3, rtol=1e-3)
            torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3, rtol=1e-3)

            # Check the masks have also been padded
            self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
            self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

            # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
            # format and not in the range [0, 1]
            encoding = image_processing(
                images=images,
                annotations=annotations,
                return_segmentation_masks=True,
                do_convert_annotations=False,
                return_tensors="pt",
            )
            self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
            self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
            # Convert to absolute coordinates
            unnormalized_boxes_0 = torch.vstack(
                [
                    expected_boxes_0[:, 0] * postprocessed_width,
                    expected_boxes_0[:, 1] * postprocessed_height,
                    expected_boxes_0[:, 2] * postprocessed_width,
                    expected_boxes_0[:, 3] * postprocessed_height,
                ]
            ).T
            unnormalized_boxes_1 = torch.vstack(
                [
                    expected_boxes_1[:, 0] * postprocessed_width,
                    expected_boxes_1[:, 1] * postprocessed_height,
                    expected_boxes_1[:, 2] * postprocessed_width,
                    expected_boxes_1[:, 3] * postprocessed_height,
                ]
            ).T
            # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
            expected_boxes_0 = torch.vstack(
                [
                    unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                    unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                    unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                    unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
                ]
            ).T
            expected_boxes_1 = torch.vstack(
                [
                    unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                    unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                    unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                    unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
                ]
            ).T
            torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1, rtol=1)
            torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1, rtol=1)

    @slow
    # Copied from tests.models.deformable_detr.test_image_processing_deformable_detr.DeformableDetrImageProcessingTest.test_call_pytorch_with_coco_panoptic_annotations with DeformableDetr->GroundingDino
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        for image_processing_class in self.image_processor_list:
            # encode them
            image_processing = image_processing_class(format="coco_panoptic")
            encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")

            # verify pixel values
            expected_shape = torch.Size([1, 3, 800, 1066])
            self.assertEqual(encoding["pixel_values"].shape, expected_shape)

            expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
            torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-4, atol=1e-4)

            # verify area
            expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
            torch.testing.assert_close(encoding["labels"][0]["area"], expected_area)
            # verify boxes
            expected_boxes_shape = torch.Size([6, 4])
            self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
            expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
            torch.testing.assert_close(encoding["labels"][0]["boxes"][0], expected_boxes_slice, rtol=1e-3, atol=1e-3)
            # verify image_id
            expected_image_id = torch.tensor([39769])
            torch.testing.assert_close(encoding["labels"][0]["image_id"], expected_image_id)
            # verify is_crowd
            expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
            torch.testing.assert_close(encoding["labels"][0]["iscrowd"], expected_is_crowd)
            # verify class_labels
            expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
            torch.testing.assert_close(encoding["labels"][0]["class_labels"], expected_class_labels)
            # verify masks
            expected_masks_sum = 822873
            relative_error = torch.abs(encoding["labels"][0]["masks"].sum() - expected_masks_sum) / expected_masks_sum
            self.assertTrue(relative_error < 1e-3)
            # verify orig_size
            expected_orig_size = torch.tensor([480, 640])
            torch.testing.assert_close(encoding["labels"][0]["orig_size"], expected_orig_size)
            # verify size
            expected_size = torch.tensor([800, 1066])
            torch.testing.assert_close(encoding["labels"][0]["size"], expected_size)

    @slow
    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_panoptic_annotations with Detr->GroundingDino
    def test_batched_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt") as f:
            target = json.loads(f.read())

        annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
        annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotation_1["segments_info"])):
            coords = annotation_1["segments_info"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotation_1["segments_info"][i]["bbox"] = new_bbox

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        images = [image_0, image_1]
        annotations = [annotation_0, annotation_1]

        for image_processing_class in self.image_processor_list:
            # encode them
            image_processing = image_processing_class(format="coco_panoptic")
            encoding = image_processing(
                images=images,
                annotations=annotations,
                masks_path=masks_path,
                return_tensors="pt",
                return_segmentation_masks=True,
            )

            # Check the pixel values have been padded
            postprocessed_height, postprocessed_width = 800, 1066
            expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
            self.assertEqual(encoding["pixel_values"].shape, expected_shape)

            # Check the bounding boxes have been adjusted for padded images
            self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
            self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
            expected_boxes_0 = torch.tensor(
                [
                    [0.2625, 0.5437, 0.4688, 0.8625],
                    [0.7719, 0.4104, 0.4531, 0.7125],
                    [0.5000, 0.4927, 0.9969, 0.9854],
                    [0.1688, 0.2000, 0.2063, 0.0917],
                    [0.5492, 0.2760, 0.0578, 0.2187],
                    [0.4992, 0.4990, 0.9984, 0.9979],
                ]
            )
            expected_boxes_1 = torch.tensor(
                [
                    [0.1576, 0.3262, 0.2814, 0.5175],
                    [0.4634, 0.2463, 0.2720, 0.4275],
                    [0.3002, 0.2956, 0.5985, 0.5913],
                    [0.1013, 0.1200, 0.1238, 0.0550],
                    [0.3297, 0.1656, 0.0347, 0.1312],
                    [0.2997, 0.2994, 0.5994, 0.5987],
                ]
            )
            torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3, rtol=1e-3)
            torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3, rtol=1e-3)

            # Check the masks have also been padded
            self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
            self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

            # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
            # format and not in the range [0, 1]
            encoding = image_processing(
                images=images,
                annotations=annotations,
                masks_path=masks_path,
                return_segmentation_masks=True,
                do_convert_annotations=False,
                return_tensors="pt",
            )
            self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
            self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
            # Convert to absolute coordinates
            unnormalized_boxes_0 = torch.vstack(
                [
                    expected_boxes_0[:, 0] * postprocessed_width,
                    expected_boxes_0[:, 1] * postprocessed_height,
                    expected_boxes_0[:, 2] * postprocessed_width,
                    expected_boxes_0[:, 3] * postprocessed_height,
                ]
            ).T
            unnormalized_boxes_1 = torch.vstack(
                [
                    expected_boxes_1[:, 0] * postprocessed_width,
                    expected_boxes_1[:, 1] * postprocessed_height,
                    expected_boxes_1[:, 2] * postprocessed_width,
                    expected_boxes_1[:, 3] * postprocessed_height,
                ]
            ).T
            # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
            expected_boxes_0 = torch.vstack(
                [
                    unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                    unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                    unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                    unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
                ]
            ).T
            expected_boxes_1 = torch.vstack(
                [
                    unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                    unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                    unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                    unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
                ]
            ).T
            torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1, rtol=1)
            torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1, rtol=1)

    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_max_width_max_height_resizing_and_pad_strategy with Detr->GroundingDino
    def test_max_width_max_height_resizing_and_pad_strategy(self):
        for image_processing_class in self.image_processor_list:
            image_1 = torch.ones([200, 100, 3], dtype=torch.uint8)

            # do_pad=False, max_height=100, max_width=100, image=200x100 -> 100x50
            image_processor = image_processing_class(
                size={"max_height": 100, "max_width": 100},
                do_pad=False,
            )
            inputs = image_processor(images=[image_1], return_tensors="pt")
            self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 50]))

            # do_pad=False, max_height=300, max_width=100, image=200x100 -> 200x100
            image_processor = image_processing_class(
                size={"max_height": 300, "max_width": 100},
                do_pad=False,
            )
            inputs = image_processor(images=[image_1], return_tensors="pt")

            # do_pad=True, max_height=100, max_width=100, image=200x100 -> 100x100
            image_processor = image_processing_class(
                size={"max_height": 100, "max_width": 100}, do_pad=True, pad_size={"height": 100, "width": 100}
            )
            inputs = image_processor(images=[image_1], return_tensors="pt")
            self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 100]))

            # do_pad=True, max_height=300, max_width=100, image=200x100 -> 300x100
            image_processor = image_processing_class(
                size={"max_height": 300, "max_width": 100},
                do_pad=True,
                pad_size={"height": 301, "width": 101},
            )
            inputs = image_processor(images=[image_1], return_tensors="pt")
            self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 301, 101]))

            ### Check for batch
            image_2 = torch.ones([100, 150, 3], dtype=torch.uint8)

            # do_pad=True, max_height=150, max_width=100, images=[200x100, 100x150] -> 150x100
            image_processor = image_processing_class(
                size={"max_height": 150, "max_width": 100},
                do_pad=True,
                pad_size={"height": 150, "width": 100},
            )
            inputs = image_processor(images=[image_1, image_2], return_tensors="pt")
            self.assertEqual(inputs["pixel_values"].shape, torch.Size([2, 3, 150, 100]))

    def test_longest_edge_shortest_edge_resizing_strategy(self):
        image_1 = torch.ones([958, 653, 3], dtype=torch.uint8)

        # max size is set; width < height;
        # do_pad=False, longest_edge=640, shortest_edge=640, image=958x653 -> 640x436
        image_processor = GroundingDinoImageProcessor(
            size={"longest_edge": 640, "shortest_edge": 640},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 640, 436]))

        image_2 = torch.ones([653, 958, 3], dtype=torch.uint8)
        # max size is set; height < width;
        # do_pad=False, longest_edge=640, shortest_edge=640, image=653x958 -> 436x640
        image_processor = GroundingDinoImageProcessor(
            size={"longest_edge": 640, "shortest_edge": 640},
            do_pad=False,
        )
        inputs = image_processor(images=[image_2], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 436, 640]))

        image_3 = torch.ones([100, 120, 3], dtype=torch.uint8)
        # max size is set; width == size; height > max_size;
        # do_pad=False, longest_edge=118, shortest_edge=100, image=120x100 -> 118x98
        image_processor = GroundingDinoImageProcessor(
            size={"longest_edge": 118, "shortest_edge": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_3], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 98, 118]))

        image_4 = torch.ones([128, 50, 3], dtype=torch.uint8)
        # max size is set; height == size; width < max_size;
        # do_pad=False, longest_edge=256, shortest_edge=50, image=50x128 -> 50x128
        image_processor = GroundingDinoImageProcessor(
            size={"longest_edge": 256, "shortest_edge": 50},
            do_pad=False,
        )
        inputs = image_processor(images=[image_4], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 128, 50]))

        image_5 = torch.ones([50, 50, 3], dtype=torch.uint8)
        # max size is set; height == width; width < max_size;
        # do_pad=False, longest_edge=117, shortest_edge=50, image=50x50 -> 50x50
        image_processor = GroundingDinoImageProcessor(
            size={"longest_edge": 117, "shortest_edge": 50},
            do_pad=False,
        )
        inputs = image_processor(images=[image_5], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 50, 50]))
