# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Idefics model."""

import unittest
from functools import cached_property

import pytest
from parameterized import parameterized

from transformers import BitsAndBytesConfig, IdeficsConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
    TestCasePlus,
    require_bitsandbytes,
    require_torch,
    require_vision,
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION,
    ModelTesterMixin,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import IdeficsForVisionText2Text, IdeficsModel, IdeficsProcessor
    from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig

if is_vision_available():
    from PIL import Image


class IdeficsModelTester:
    def __init__(
        self,
        parent,
        batch_size=1,
        seq_length=7,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        alpha_initializer="ones",
        num_labels=3,
        scope=None,
        modality_type_vocab_size=2,
        vision_embed_dim=32,
        vision_patch_size=2,
        vision_image_size=30,
        vision_num_attention_heads=4,
        vision_num_hidden_layers=2,
        vision_intermediate_size=37,
        perceiver_qk_layer_norms_perceiver=False,
        perceiver_resampler_depth=2,
        perceiver_resampler_head_dim=8,
        perceiver_resampler_n_heads=2,
        perceiver_resampler_n_latents=16,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.alpha_initializer = alpha_initializer
        self.num_labels = num_labels
        self.scope = scope
        self.modality_type_vocab_size = modality_type_vocab_size

        self.vision_embed_dim = vision_embed_dim
        self.vision_patch_size = vision_patch_size
        self.vision_image_size = vision_image_size
        self.vision_num_attention_heads = vision_num_attention_heads
        self.vision_num_hidden_layers = vision_num_hidden_layers
        self.vision_intermediate_size = vision_intermediate_size

        self.vision_config = IdeficsVisionConfig(
            embed_dim=self.vision_embed_dim,
            patch_size=self.vision_patch_size,
            image_size=self.vision_image_size,
            num_attention_heads=self.vision_num_attention_heads,
            num_hidden_layers=self.vision_num_hidden_layers,
            intermediate_size=self.vision_intermediate_size,
        ).to_dict()

        self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver
        self.perceiver_resampler_depth = perceiver_resampler_depth
        self.perceiver_resampler_head_dim = perceiver_resampler_head_dim
        self.perceiver_resampler_n_heads = perceiver_resampler_n_heads
        self.perceiver_resampler_n_latents = perceiver_resampler_n_latents

        self.perceiver_config = IdeficsPerceiverConfig(
            qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver,
            resampler_depth=self.perceiver_resampler_depth,
            resampler_head_dim=self.perceiver_resampler_head_dim,
            resampler_n_heads=self.perceiver_resampler_n_heads,
            resampler_n_latents=self.perceiver_resampler_n_latents,
        )

        # we set the expected sequence length (which is used in several tests)
        # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
        self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1

    def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        pixel_values = floats_tensor(
            [
                self.batch_size,
                num_images,
                self.num_channels,
                self.image_size + image_expansion,
                self.image_size + image_expansion,
            ]
        )
        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images])

        config = self.get_config()
        return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding)

    def prepare_config_and_inputs_gate_tests(self):
        # Create a list of configs and inputs, to test 2 things:
        # 1. For the same image, the output should be different when image_attention_mask is filled with 0s vs filled with 1s.
        # 2. For 2 different images, the output should be the same when image_attention_mask is filled with 0s.

        interpolate_pos_encoding = False
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        pixel_values = floats_tensor(
            [
                self.batch_size,
                1,
                self.num_channels,
                self.image_size,
                self.image_size,
            ]
        )
        pixel_values_list = [
            pixel_values.clone(),
            pixel_values.clone(),
            pixel_values.clone().fill_(0.6),
            pixel_values.clone().fill_(0.3),
        ]
        attention_mask = None
        if self.use_input_mask:
            attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, 1])
        image_attention_mask_list = [
            image_attention_mask.clone().fill_(0),
            image_attention_mask.clone().fill_(1),
            image_attention_mask.clone().fill_(0),
            image_attention_mask.clone().fill_(0),
        ]

        config = self.get_config()
        inputs_list = []
        for pixel_values, image_attention_mask in zip(pixel_values_list, image_attention_mask_list):
            inputs_list.append(
                {
                    "input_ids": input_ids,
                    "attention_mask": attention_mask,
                    "pixel_values": pixel_values,
                    "image_attention_mask": image_attention_mask,
                    "interpolate_pos_encoding": interpolate_pos_encoding,
                }
            )

        inputs_w_same_img = inputs_list[:2]
        inputs_w_0_img_attn = inputs_list[2:]
        return config, inputs_w_same_img, inputs_w_0_img_attn

    def get_config(self):
        return IdeficsConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            alpha_initializer=self.alpha_initializer,
            num_labels=self.num_labels,
            modality_type_vocab_size=self.modality_type_vocab_size,
            vision_config=self.vision_config,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        input_mask,
        pixel_values,
        image_attention_mask,
        interpolate_pos_encoding,
    ):
        model = IdeficsModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            pixel_values=pixel_values,
            image_attention_mask=image_attention_mask,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size)
        )

    def create_and_check_model_gen(
        self,
        config,
        input_ids,
        input_mask,
        pixel_values,
        image_attention_mask,
        interpolate_pos_encoding,
    ):
        model = IdeficsForVisionText2Text(config)
        model.to(torch_device)
        model.eval()
        model.generate(
            input_ids,
            attention_mask=input_mask,
            pixel_values=pixel_values,
            image_attention_mask=image_attention_mask,
            interpolate_pos_encoding=interpolate_pos_encoding,
            max_length=self.seq_length + 2,
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            pixel_values,
            image_attention_mask,
            interpolate_pos_encoding,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "pixel_values": pixel_values,
            "image_attention_mask": image_attention_mask,
            "interpolate_pos_encoding": interpolate_pos_encoding,
        }
        return config, inputs_dict

    def prepare_pixel_values(self):
        return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])


@require_torch
class IdeficsModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (IdeficsModel, IdeficsForVisionText2Text) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": IdeficsModel,
            "image-text-to-text": IdeficsForVisionText2Text,
            "any-to-any": IdeficsForVisionText2Text,
        }
        if is_torch_available()
        else {}
    )

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        # XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same
        # as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing
        # as super won't do it
        if return_labels:
            inputs_dict["labels"] = torch.zeros(
                (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
            )

        return inputs_dict

    @parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
    @unittest.skip("Idefics requires both text and image inputs which is currently not done in this test.")
    def test_eager_matches_sdpa_inference(
        self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
    ):
        pass

    def test_model_outputs_equivalence(self):
        try:
            orig = self.all_model_classes
            # IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does
            self.all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()
            super().test_model_outputs_equivalence()
        finally:
            self.all_model_classes = orig

    def setUp(self):
        self.model_tester = IdeficsModelTester(self)
        self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=False, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=False, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_with_image_pos_embeddings_interpolation_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model(*config_and_inputs)
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_with_image_pos_embeddings_interpolation_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model(*config_and_inputs)
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_generate_with_image_pos_embeddings_interpolation_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model_gen(*config_and_inputs)

    def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model_gen(*config_and_inputs)

    def test_cross_attention_gates(self):
        config, inputs_w_same_img, inputs_w_0_img_attn = self.model_tester.prepare_config_and_inputs_gate_tests()

        model = IdeficsModel(config=config).to(torch_device)
        model.eval()
        test_1_results = []
        for inputs in inputs_w_same_img:
            with torch.no_grad():
                last_hidden_states = model(**inputs).last_hidden_state
            last_hidden_states = model(**inputs).last_hidden_state
            test_1_results.append(last_hidden_states)
        self.assertNotEqual(test_1_results[0].sum().item(), test_1_results[1].sum().item())

        test_2_results = []
        for inputs in inputs_w_0_img_attn:
            with torch.no_grad():
                last_hidden_states = model(**inputs).last_hidden_state
            test_2_results.append(last_hidden_states)
        self.assertEqual(test_2_results[0].sum().item(), test_2_results[1].sum().item())

    def test_training(self):
        if not self.model_tester.is_training:
            self.skipTest(reason="model_tester.is_training is set to False")

        for model_class in self.all_model_classes:
            # IdeficsModel does not support training, users should use
            # IdeficsForVisionText2Text for this purpose
            if model_class == IdeficsModel:
                self.skipTest(reason="IdeficsModel does not support training")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        if not self.model_tester.is_training:
            self.skipTest(reason="model_tester.is_training is set to False")

        for model_class in self.all_model_classes:
            # IdeficsModel does not support training, users should use
            # IdeficsForVisionText2Text for this purpose
            if model_class == IdeficsModel:
                self.skipTest(reason="IdeficsModel does not support training")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
    def test_retain_grad_hidden_states_attentions(self):
        return

    @pytest.mark.generate
    @unittest.skip(reason="""IDEFICS cannot generate with no images provided!""")
    def test_generate_without_input_ids(self):
        pass

    @pytest.mark.generate
    @unittest.skip(reason="""IDEFICS cannot generate with no images provided!""")
    def test_generate_continue_from_inputs_embeds(self):
        pass

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions

            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertFalse(attentions[0] is None)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertFalse(self_attentions[0] is None)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @slow
    def test_model_from_pretrained(self):
        model_name = "HuggingFaceM4/idefics-9b"
        model = IdeficsModel.from_pretrained(model_name)
        self.assertIsNotNone(model)

    @unittest.skip("Idefics has a hard requirement on SDPA")
    def test_sdpa_can_dispatch_non_composite_models(self):
        pass

    @unittest.skip(reason="Idefics can't do text-only inference")
    def test_generate_from_random_inputs_embeds(
        self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
    ):
        pass

    @pytest.mark.generate
    def test_left_padding_compatibility(self):
        # Overwrite -- Idefics needs to prepare `image_attention_mask`, and it must be padded accordingly
        _, inputs_dict = self.prepare_config_and_inputs_for_generate()
        input_ids = inputs_dict["input_ids"]
        image_attention_mask = inputs_dict["image_attention_mask"]

        pad_size_img = (input_ids.shape[0], 32, image_attention_mask.shape[-1])
        extra_img_mask = torch.zeros(pad_size_img, dtype=image_attention_mask.dtype, device=torch_device)
        padded_image_attention_mask = torch.cat([extra_img_mask, image_attention_mask], dim=1)

        # `image_attention_mask` is randomly generated in `prepare_config_and_inputs_for_generate`, and it must match
        # its padded version for the test to be valid -- we need to pass both
        unpadded_custom_inputs = {"image_attention_mask": image_attention_mask}
        padded_custom_inputs = {"image_attention_mask": padded_image_attention_mask}
        super().test_left_padding_compatibility(
            unpadded_custom_inputs=unpadded_custom_inputs, padded_custom_inputs=padded_custom_inputs
        )

    @unittest.skip(reason="Idefics can't do text-only inference (test filters non-text inputs)")
    def test_eager_padding_matches_padding_free_with_position_ids(self):
        pass

    @unittest.skip(reason="Idefics can't do text-only inference (test filters non-text inputs)")
    def test_sdpa_padding_matches_padding_free_with_position_ids(self):
        pass


@require_torch
class IdeficsForVisionText2TextTest(IdeficsModelTest, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = IdeficsModelTester(
            self,
            modality_type_vocab_size=3,
        )
        self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)

    @parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
    @unittest.skip("Idefics requires both text and image inputs which is currently not done in this test.")
    def test_eager_matches_sdpa_inference(
        self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
    ):
        pass

    @pytest.mark.generate
    def test_generate_continue_from_past_key_values(self):
        """Overwrite because IDEFICS needs image attention mask to be also processed"""

        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            # 5. ignore `encoder_no_repeat_ngram_size`, which is set by default in some encoder-decoder models. When
            #    we use their decoder as a stand-alone model, `encoder_no_repeat_ngram_size` actually prevents
            #    repetition exclusively from the prompt. This test relies on comparing one call vs 2 calls
            #    with cache, what is considered a prompt is different in the two cases.

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None
            model.generation_config.encoder_no_repeat_ngram_size = 0
            model.generation_config.use_cache = True

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            inputs["input_ids"] = outputs_cached.sequences
            if "attention_mask" in inputs:
                inputs["attention_mask"] = torch.nn.functional.pad(
                    inputs["attention_mask"],
                    (0, new_attention_len - inputs["attention_mask"].shape[1]),
                    mode="constant",
                    value=1,
                )
            if "image_attention_mask" in inputs:
                inputs["image_attention_mask"] = inputs["image_attention_mask"][:, -1:, :]

            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            self._check_caches_are_equal(outputs.past_key_values, outputs_cached.past_key_values)

    @pytest.mark.generate
    def test_generate_without_input_ids(self):
        """Overwrite because IDEFICS needs image attention mask to be also processed and requires image at input always."""

        config, input_dict = self.prepare_config_and_inputs_for_generate()
        pixel_values = input_dict["pixel_values"]
        image_attention_mask = input_dict["image_attention_mask"][:, -1:, :]

        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()

            output_ids_generate = model.generate(
                pixel_values=pixel_values,
                image_attention_mask=image_attention_mask,
                do_sample=False,
                max_new_tokens=self.max_new_tokens,
                remove_invalid_values=True,
            )
            self.assertIsNotNone(output_ids_generate)

    @pytest.mark.generate
    def test_generate_continue_from_inputs_embeds(self):
        """Overwrite for IDEFICS: Ensure image attention mask is processed while continuing from `inputs_embeds`."""

        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
            print(inputs)

            model = model_class(config).to(torch_device).eval()

            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None
            model.generation_config.use_cache = True

            input_ids = inputs.pop("input_ids")
            input_embeds = model.get_input_embeddings()(input_ids)

            generation_kwargs = {
                "return_dict_in_generate": True,
                "do_sample": False,
            }

            inputs["inputs_embeds"] = input_embeds

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, max_new_tokens=4, **generation_kwargs)
            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            initial_output = model.generate(**inputs, max_new_tokens=3, **generation_kwargs)
            inputs["past_key_values"] = initial_output.past_key_values

            new_attention_len = input_ids.shape[1] + initial_output.sequences.shape[-1]
            continued_embeds = torch.cat([input_embeds, model.get_input_embeddings()(initial_output.sequences)], dim=1)
            inputs["inputs_embeds"] = continued_embeds

            if "attention_mask" in inputs:
                inputs["attention_mask"] = torch.nn.functional.pad(
                    inputs["attention_mask"],
                    (0, new_attention_len - inputs["attention_mask"].shape[1]),
                    mode="constant",
                    value=1,
                )
            if "image_attention_mask" in inputs:
                inputs["image_attention_mask"] = inputs["image_attention_mask"][..., -1:, :]

            cached_output = model.generate(**inputs, max_new_tokens=1, **generation_kwargs)

            # Verify that the combined outputs match the full generation.
            combined_output_sequences = torch.concat([initial_output.sequences, cached_output.sequences], axis=1)
            self.assertListEqual(outputs.sequences.tolist(), combined_output_sequences.tolist())
            self._check_caches_are_equal(outputs.past_key_values, cached_output.past_key_values)

    def _check_attentions_for_generate(
        self, batch_size, attentions, prompt_length, output_length, config, decoder_past_key_values
    ):
        """
        Overwrite from generation tests because Idefics has only SDPA layers.
        Do not skip because we still want generation tests to run. Rather we can remove checks for shape.
        """
        pass

    @unittest.skip(reason="We only test the model that takes in multiple images")
    def test_custom_4d_attention_mask(self):
        pass

    @unittest.skip(reason="IDEFICS cannot compile due to dynamic control flow when checking inputs")
    def test_generate_with_static_cache(self):
        pass

    @unittest.skip(reason="We only test the model that takes in multiple images")
    def test_model(self):
        pass

    @unittest.skip(reason="We only test the model that takes in multiple images")
    def test_for_token_classification(self):
        pass

    @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip("Idefics has a hard requirement on SDPA")
    def test_sdpa_can_dispatch_non_composite_models(self):
        pass

    @unittest.skip(
        "Idefics has a separate test runner for generation tests with complex inheritance, causing this check to fail"
    )
    def test_generation_tester_mixin_inheritance(self):
        pass

    @unittest.skip(reason="Idefics can't do text-only inference")
    def test_generate_from_random_inputs_embeds(
        self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
    ):
        pass


@require_torch
@require_vision
class IdeficsModelIntegrationTest(TestCasePlus):
    @cached_property
    def default_processor(self):
        return (
            IdeficsProcessor.from_pretrained("HuggingFaceM4/idefics-9b", revision="refs/pr/11")
            if is_vision_available()
            else None
        )

    @require_bitsandbytes
    @slow
    def test_inference_natural_language_visual_reasoning(self):
        cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png"
        cats_image_obj = Image.open(cat_image_path)  # 2 cats
        dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"

        prompts = [
            [
                "User:",
                dogs_image_url,
                "Describe this image.\nAssistant: An image of two dogs.\n",
                "User:",
                cats_image_obj,
                "Describe this image.\nAssistant:",
            ],
            [
                "User:",
                cats_image_obj,
                "Describe this image.\nAssistant: An image of two kittens.\n",
                "User:",
                dogs_image_url,
                "Describe this image.\nAssistant:",
            ],
        ]

        # the CI gpu is small so using quantization to fit
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype="float16",
        )
        model = IdeficsForVisionText2Text.from_pretrained(
            "HuggingFaceM4/idefics-9b", quantization_config=quantization_config, device_map="auto"
        )
        processor = self.default_processor
        inputs = processor(text=prompts, return_tensors="pt", padding="longest").to(torch_device)
        generated_ids = model.generate(**inputs, max_length=100)
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)

        # keep for debugging
        for i, t in enumerate(generated_text):
            t = bytes(t, "utf-8").decode("unicode_escape")
            print(f"{i}:\n{t}\n")

        self.assertIn("image of two cats", generated_text[0])
        self.assertIn("image of two dogs", generated_text[1])
