# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import inspect
import unittest
from functools import cached_property

from transformers import ImageGPTConfig
from transformers.testing_utils import require_torch, require_vision, run_test_using_subprocess, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        ImageGPTForCausalImageModeling,
        ImageGPTForImageClassification,
        ImageGPTModel,
    )

if is_vision_available():
    from PIL import Image

    from transformers import ImageGPTImageProcessor


class ImageGPTModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = None

    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )

        return (
            config,
            input_ids,
            input_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        return ImageGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            n_inner=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            use_cache=True,
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 513
        config.max_position_embeddings = 1024
        return config

    def create_and_check_imagegpt_model(self, config, input_ids, input_mask, token_type_ids, *args):
        model = ImageGPTModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, token_type_ids, *args):
        model = ImageGPTForCausalImageModeling(config)
        model.to(torch_device)
        model.eval()

        labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
        result = model(input_ids, token_type_ids=token_type_ids, labels=labels)
        self.parent.assertEqual(result.loss.shape, ())
        # ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1))

    def create_and_check_imagegpt_for_image_classification(
        self, config, input_ids, input_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = ImageGPTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
        }

        return config, inputs_dict


@require_torch
class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else ()
    )
    pipeline_model_mapping = (
        {"image-feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification}
        if is_torch_available()
        else {}
    )
    test_missing_keys = False
    test_torch_exportable = True

    # as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "ImageGPTForImageClassification":
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

    # we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings
    def _check_scores(self, batch_size, scores, generated_length, config):
        expected_shape = (batch_size, config.vocab_size - 1)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), generated_length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    # After #33632, this test still passes, but many subsequential tests fail with `device-side assert triggered`.
    # We need to put `@slow` whenever `run_test_using_subprocess` is used.
    @slow
    @run_test_using_subprocess
    def test_beam_search_generate_dict_outputs_use_cache(self):
        super().test_beam_search_generate_dict_outputs_use_cache()

    def setUp(self):
        self.model_tester = ImageGPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_imagegpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_imagegpt_model(*config_and_inputs)

    def test_imagegpt_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_imagegpt_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs)

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model_name = "openai/imagegpt-small"
        model = ImageGPTModel.from_pretrained(model_name)
        self.assertIsNotNone(model)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_ids"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    @unittest.skip(reason="Model inputs don't fit test pattern")  # and it's not used enough to be worth fixing :)
    def test_past_key_values_format(self):
        pass


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class ImageGPTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None

    @slow
    def test_inference_causal_lm_head(self):
        model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1024, 512))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]]
        ).to(torch_device)

        torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
