# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest
from unittest.util import safe_repr

import pytest
from parameterized import parameterized

from transformers import AutoTokenizer, MambaConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MambaForCausalLM,
        MambaModel,
    )
    from transformers.models.mamba.modeling_mamba import MambaCache


class MambaModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        intermediate_size=32,
        hidden_act="silu",
        hidden_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        num_labels=3,
        num_choices=4,
        scope=None,
        tie_word_embeddings=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1
        self.tie_word_embeddings = tie_word_embeddings

    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        attention_mask = ids_tensor([self.batch_size, self.seq_length], 1)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )

        return (
            config,
            input_ids,
            attention_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        return MambaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            intermediate_size=self.intermediate_size,
            activation_function=self.hidden_act,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
            tie_word_embeddings=self.tie_word_embeddings,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

    def create_and_check_mamba_model(self, config, input_ids, *args):
        config.output_hidden_states = True
        model = MambaModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)

    def create_and_check_causal_lm(self, config, input_ids, *args):
        model = MambaForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_state_equivalency(self, config, input_ids, *args):
        model = MambaModel(config=config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)
        output_whole = outputs.last_hidden_state

        outputs = model(
            input_ids[:, :-1],
            use_cache=True,
            cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device),
        )
        output_one = outputs.last_hidden_state

        # Using the state computed on the first inputs, we will get the same output
        outputs = model(
            input_ids[:, -1:],
            use_cache=True,
            cache_params=outputs.cache_params,
            cache_position=torch.arange(config.conv_kernel, config.conv_kernel + 1, device=input_ids.device),
        )
        output_two = outputs.last_hidden_state

        self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
        # TODO the original mamba does not support decoding more than 1 token neither do we

    def create_and_check_mamba_cached_slow_forward_and_backwards(
        self, config, input_ids, *args, gradient_checkpointing=False
    ):
        model = MambaModel(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        # create cache
        cache = model(input_ids, use_cache=True).cache_params
        cache.reset()

        # use cache
        token_emb = model.embeddings(input_ids)
        outputs = model.layers[0].mixer.slow_forward(
            token_emb, cache, cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device)
        )

        loss = torch.log1p(torch.abs(outputs.sum()))
        self.parent.assertEqual(loss.shape, ())
        self.parent.assertEqual(outputs.shape, (self.batch_size, self.seq_length, self.hidden_size))
        loss.backward()

    def create_and_check_mamba_lm_head_forward_and_backwards(
        self, config, input_ids, *args, gradient_checkpointing=False
    ):
        model = MambaForCausalLM(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def prepare_config_and_inputs_for_common(self):
        (
            config,
            input_ids,
            attention_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (MambaModel, MambaForCausalLM) if is_torch_available() else ()
    has_attentions = False  # Mamba does not support attentions
    test_missing_keys = False

    pipeline_model_mapping = (
        {"feature-extraction": MambaModel, "text-generation": MambaForCausalLM} if is_torch_available() else {}
    )

    def setUp(self):
        self.model_tester = MambaModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=MambaConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
        )

    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config):
        self.assertIsInstance(past_key_values, MambaCache)

        conv_shape = (batch_size, config.intermediate_size, config.conv_kernel)
        ssm_shape = (batch_size, config.intermediate_size, config.state_size)

        self.assertTrue(config.num_hidden_layers, len(past_key_values.conv_states))

        for idx in range(len(past_key_values.conv_states)):
            self.assertEqual(past_key_values.conv_states[idx].shape, conv_shape)
            self.assertEqual(past_key_values.ssm_states[idx].shape, ssm_shape)

    def assertInterval(self, member, container, msg=None):
        r"""
        Simple utility function to check if a member is inside an interval.
        """
        if isinstance(member, torch.Tensor):
            max_value, min_value = member.max().item(), member.min().item()
        elif isinstance(member, (list, tuple)):
            max_value, min_value = max(member), min(member)

        if not isinstance(container, list):
            raise TypeError("container should be a list or tuple")
        elif len(container) != 2:
            raise ValueError("container should have 2 elements")

        expected_min, expected_max = container

        is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)

        if not is_inside_interval:
            standardMsg = f"{safe_repr(member)} not found in {safe_repr(container)}"
            self.fail(self._formatMessage(msg, standardMsg))

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mamba_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mamba_model(*config_and_inputs)

    def test_mamba_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causal_lm(*config_and_inputs)

    def test_state_equivalency(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_state_equivalency(*config_and_inputs)

    def test_mamba_cached_slow_forward_and_backwards(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mamba_cached_slow_forward_and_backwards(*config_and_inputs)

    def test_mamba_lm_head_forward_and_backwards(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mamba_lm_head_forward_and_backwards(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model = MambaModel.from_pretrained("hf-internal-testing/mamba-130m")
        self.assertIsNotNone(model)

    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, MambaCache):  # MODIFIED PART START
                        recursive_check(tuple_object.conv_states, dict_object.conv_states)
                        recursive_check(tuple_object.ssm_states, dict_object.ssm_states)
                    elif isinstance(tuple_object, (list, tuple)):  # MODIFIED PART END
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(tuple_object, dict_object, atol=1e-5),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

    @unittest.skip("The `input_embeds` when fed don't produce the same results.")
    def test_beam_sample_generate(self):
        pass

    def test_dtype_mismatch_handled_in_cache(self):
        config, input_ids, *args = self.model_tester.prepare_config_and_inputs()
        model = MambaModel(config)
        model.to(torch_device).to(torch.float16)
        model.eval()

        # Create cache with float32 dtype
        cache_params = MambaCache(config, max_batch_size=input_ids.size(0), dtype=torch.float32, device=torch_device)

        # If code is correct, no error occurs and test passes
        outputs = model(
            input_ids,
            cache_params=cache_params,
            use_cache=True,
            cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device),
        )

        self.assertIsNotNone(outputs)
        self.assertIsNotNone(outputs.last_hidden_state)
        self.assertEqual(
            outputs.last_hidden_state.shape,
            (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.hidden_size),
        )

    @unittest.skip("Mamba models do not support DDP.")
    def test_multi_gpu_data_parallel_forward(self):
        pass


@slow
@require_torch
class MambaIntegrationTests(unittest.TestCase):
    def setUp(self):
        self.model_id = "state-spaces/mamba-2.8b-hf"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)

    @parameterized.expand([(torch_device,), ("cpu",)])
    def test_simple_generate(self, device):
        tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
        tokenizer.pad_token = tokenizer.eos_token

        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", dtype=torch.float32)
        model.to(device)
        input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"].to(device)

        out = model.generate(input_ids, do_sample=False, use_cache=True, max_new_tokens=10)
        output_sentence = tokenizer.decode(out[0, :])
        self.assertEqual(output_sentence, "Hey how are you doing?\n\nI'm so glad you're here.")

        with torch.no_grad():
            logits = model(input_ids=input_ids).logits

        EXPECTED_LOGITS_NO_GRAD = torch.tensor(
            [
                -55.6909, -69.7903, -49.8981, -51.7581, -57.6544, -57.9368, -56.9591,
                -57.9033, -54.6787, -55.9261, -55.3011, -58.0765, -60.5642, -47.0176,
                -52.0344, -49.7836, -55.9463, -57.8957, -56.7627, -57.1080, -57.3434,
                -58.3015, -57.7875, -58.7760, -59.6037, -59.0665, -58.7087, -52.9293,
                -53.4654, -57.3466, -56.9294, -55.7314, -53.3141, -55.8171, -56.9879,
                -56.9121, -56.2139, -54.7198, -56.4134, -57.4825
            ])  # fmt: skip

        torch.testing.assert_close(logits[0, 0, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)

    @parameterized.expand([(torch_device,), ("cpu",)])
    def test_simple_generate_cuda_kernels_tiny(self, device):
        expected_output = "Hello my name is John and I am a newbie to the world"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", dtype=torch.float16).to(device)

        output = model.generate(input_ids, max_new_tokens=10)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)

    @parameterized.expand([(torch_device,), ("cpu",)])
    def test_simple_generate_cuda_kernels_small(self, device):
        expected_output = "Hello my name is\n\nI am a\n\nI am a"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-790m-hf", dtype=torch.float16).to(device)

        output = model.generate(input_ids, max_new_tokens=10)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)

    @parameterized.expand([(torch_device,), ("cpu",)])
    def test_simple_generate_cuda_kernels_mid(self, device):
        expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf", dtype=torch.float16).to(device)

        output = model.generate(input_ids, max_new_tokens=20)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)

    @parameterized.expand([(torch_device,), ("cpu",)])
    def test_simple_generate_cuda_kernels_big(self, device):
        expected_output = "Hello my name is John and I am a new member of this forum. I am a retired Marine and I am a member of the Marine Corps League. I am a"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", dtype=torch.float16).to(device)

        output = model.generate(input_ids, max_new_tokens=30)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)

    @pytest.mark.torch_compile_test
    def test_compile_mamba_cache(self):
        expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
        model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf", dtype=torch.float16).to(torch_device)

        output = model.generate(input_ids, max_new_tokens=20)
        output_sentence = self.tokenizer.decode(output[0].tolist())
        self.assertEqual(output_sentence, expected_output)

        model.forward = torch.compile(model.forward, fullgraph=True, mode="reduce-overhead")
        output = model.generate(input_ids, max_new_tokens=20)
        output_sentence = self.tokenizer.decode(output[0].tolist())
        self.assertEqual(output_sentence, expected_output)
