# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PEGASUS-X model."""

import copy
import math
import tempfile
import unittest
from functools import cached_property

from transformers import is_torch_available
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_torch_fp16,
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import PegasusTokenizer, PegasusXConfig, PegasusXForConditionalGeneration, PegasusXModel
    from transformers.models.pegasus_x.modeling_pegasus_x import PegasusXDecoder, PegasusXEncoder


def prepare_pegasus_x_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
    }


@require_torch
class PegasusXModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=50,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = PegasusXConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            stagger_local_blocks=False,
        )
        inputs_dict = prepare_pegasus_x_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = PegasusXModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = PegasusXModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = PegasusXEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = PegasusXDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
class PegasusXModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (PegasusXModel, PegasusXForConditionalGeneration) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": PegasusXModel,
            "summarization": PegasusXForConditionalGeneration,
            "text2text-generation": PegasusXForConditionalGeneration,
            "translation": PegasusXForConditionalGeneration,
        }
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True

    test_missing_keys = False

    def setUp(self):
        self.model_tester = PegasusXModelTester(self)
        self.config_tester = ConfigTester(self, config_class=PegasusXConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], set())

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (PegasusXModel, PegasusXForConditionalGeneration):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    @require_torch_fp16
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = PegasusXForConditionalGeneration(config).eval().to(torch_device)
        model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0]["local"].shape[-4:]),
                [
                    self.model_tester.num_attention_heads,
                    math.ceil(encoder_seq_length / model.config.block_size),
                    model.config.block_size,
                    model.config.block_size + model.config.num_global_tokens,
                ],
            )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )

                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0]["local"].shape[-4:]),
                [
                    self.model_tester.num_attention_heads,
                    math.ceil(encoder_seq_length / model.config.block_size),
                    model.config.block_size,
                    model.config.block_size + model.config.num_global_tokens,
                ],
            )

    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, prompt_length):
        encoder_expected_shape = (
            batch_size,
            config.num_attention_heads,
            math.ceil(prompt_length / config.block_size),
            config.block_size,
            config.block_size + config.num_global_tokens,
        )
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions["local"].shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, prompt_length):
        encoder_expected_shape = (batch_size, self.round_up(prompt_length, config.block_size), config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        # Only the last layer will have the hidden states truncated back to token level
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states[:-1]],
            [encoder_expected_shape] * (len(hidden_states) - 1),
        )
        # Only the last layer will have the hidden states truncated back to token level
        self.assertEqual(
            hidden_states[-1][0].shape,
            (batch_size, prompt_length, config.hidden_size),
        )

    def test_hidden_states_output(self):
        def _check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.round_up(seq_length, config.block_size), self.model_tester.hidden_size],
            )

            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            _check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            _check_hidden_states_output(inputs_dict, config, model_class)

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = self.has_attentions

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions["local"].retain_grad()
                encoder_attentions["global"].retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions["local"].grad)
                self.assertIsNotNone(encoder_attentions["global"].grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)

    @classmethod
    def round_up(cls, n, k):
        return math.ceil(n / k) * k


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise Exception
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class PegasusXModelIntegrationTests(unittest.TestCase):
    @cached_property
    def default_tokenizer(self):
        return PegasusTokenizer.from_pretrained("google/pegasus-x-base")

    def test_inference_no_head(self):
        model = PegasusXModel.from_pretrained("google/pegasus-x-base").to(torch_device)
        input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        decoder_input_ids = _long_tensor([[2, 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588]])
        inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = torch.tensor(
            [[[0.0702, -0.1552, 0.1192], [0.0836, -0.1848, 0.1304], [0.0673, -0.1686, 0.1045]]], device=torch_device
        )

        torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)

    def test_inference_head(self):
        model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base").to(torch_device)

        # change to intended input
        input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        inputs_dict = prepare_pegasus_x_inputs_dict(model.config, input_ids, decoder_input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 11, model.config.vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = torch.tensor(
            [[[0.0, 9.5705185, 1.5897303], [0.0, 9.833374, 1.5828674], [0.0, 10.429961, 1.5643371]]],
            device=torch_device,
        )
        torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=TOLERANCE, atol=TOLERANCE)

    def test_seq_to_seq_generation(self):
        hf = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base-arxiv").to(torch_device)
        tok = PegasusTokenizer.from_pretrained("google/pegasus-x-base")

        batch_input = [
            "While large pretrained Transformer models have proven highly capable at tackling natural language tasks,"
            " handling long sequence inputs continues to be a significant challenge. One such task is long input"
            " summarization, where inputs are longer than the maximum input context of most pretrained models. Through"
            " an extensive set of experiments, we investigate what model architectural changes and pretraining"
            " paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that"
            " a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance"
            " and efficiency, and that an additional pretraining phase on long sequences meaningfully improves"
            " downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the"
            " PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X"
            " achieves strong performance on long input summarization tasks comparable with much larger models while"
            " adding few additional parameters and not requiring model parallelism to train."
        ]

        # The below article tests that we don't add any hypotheses outside of the top n_beams
        dct = tok.batch_encode_plus(
            batch_input,
            max_length=512,
            padding="max_length",
            truncation="only_first",
            return_tensors="pt",
        )

        hypotheses_batch = hf.generate(
            input_ids=dct["input_ids"].to(torch_device),
            attention_mask=dct["attention_mask"].to(torch_device),
            num_beams=2,
            max_length=32,
        )

        EXPECTED = [
            "we investigate the performance of a new pretrained model for long input summarization. <n> the model is a"
            " superposition of two well -"
        ]

        generated = tok.batch_decode(
            hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
        )
        assert generated == EXPECTED


class PegasusXStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
        decoder_layers=2,
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=50,
        is_encoder_decoder=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = PegasusXConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = PegasusXDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = PegasusXDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values, use_cache=True)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class PegasusXStandaloneDecoderModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (PegasusXDecoder,) if is_torch_available() else ()

    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = PegasusXStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=PegasusXConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    @unittest.skip(reason="Decoder cannot keep gradients")
    def test_retain_grad_hidden_states_attentions(self):
        return

    @unittest.skip(reason="Decoder cannot keep gradients")
    def test_flex_attention_with_grads():
        return
