# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np
import torch
from parameterized import parameterized

from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available

from ...test_processing_common import ProcessorTesterMixin, url_to_local_path


if is_vision_available():
    from transformers import PixtralProcessor


@require_vision
class PixtralProcessorTest(ProcessorTesterMixin, unittest.TestCase):
    processor_class = PixtralProcessor
    model_id = "mistral-community/pixtral-12b"
    url_0 = url_to_local_path(
        "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
    )
    image_0 = np.random.randint(255, size=(3, 876, 1300), dtype=np.uint8)
    url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
    image_1 = np.random.randint(255, size=(3, 480, 640), dtype=np.uint8)
    image_2 = np.random.randint(255, size=(3, 1024, 1024), dtype=np.uint8)

    @parameterized.expand([(1, "pt"), (2, "pt")])
    @unittest.skip("Not tested before, to investigate")
    def test_apply_chat_template_image(self, batch_size, return_tensors):
        pass

    def test_image_token_filling(self):
        processor = self.processor_class.from_pretrained(self.tmpdirname)
        # Important to check with non square image
        image = torch.randint(0, 2, (3, 500, 316))
        expected_image_tokens = 640
        image_token_index = 10

        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": "What is shown in this image?"},
                ],
            },
        ]
        inputs = processor(
            text=[processor.apply_chat_template(messages)],
            images=[image],
            return_tensors="pt",
        )
        image_tokens = (inputs["input_ids"] == image_token_index).sum().item()
        self.assertEqual(expected_image_tokens, image_tokens)

    def test_processor_with_single_image(self):
        processor = self.processor_class.from_pretrained(self.tmpdirname)
        prompt_string = "USER: [IMG]\nWhat's the content of the image? ASSISTANT:"

        # Make small for checking image token expansion
        processor.image_processor.size = {"longest_edge": 30}
        processor.image_processor.patch_size = {"height": 2, "width": 2}

        # Test passing in an image
        inputs_image = processor(text=prompt_string, images=self.image_0, return_tensors="pt")
        self.assertIn("input_ids", inputs_image)
        self.assertTrue(len(inputs_image["input_ids"]) == 1)
        self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_image["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
            [21510,  1058,  1032,    10,    10,    12,    10,    10,    13,  1010, 7493,  1681,  1278,  4701,  1307,  1278,  3937,  1063,  1349,  4290, 16002, 41150,  1058]
        )
        # fmt: on

        # Test passing in a url
        inputs_url = processor(text=prompt_string, images=self.url_0, return_tensors="pt")
        self.assertIn("input_ids", inputs_url)
        self.assertTrue(len(inputs_url["input_ids"]) == 1)
        self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_url["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
            [21510,  1058,  1032,    10,    10,    12,    10,    10,    13,  1010, 7493,  1681,  1278,  4701,  1307,  1278,  3937,  1063,  1349,  4290, 16002, 41150,  1058]
        )
        # fmt: on

        # Test passing inputs as a single list
        inputs_image = processor(text=prompt_string, images=[self.image_0], return_tensors="pt")
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 32, 32]))

        # fmt: off
        self.assertEqual(
            inputs_image["input_ids"][0].tolist(),
            [21510,  1058,  1032,    10,    10,    12,    10,    10,    13,  1010, 7493,  1681,  1278,  4701,  1307,  1278,  3937,  1063,  1349,  4290, 16002, 41150,  1058]
        )
        # fmt: on

        # Test as nested single list
        inputs_image = processor(text=prompt_string, images=[[self.image_0]], return_tensors="pt")
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([1, 3, 32, 32]))

        # fmt: off
        self.assertEqual(
            inputs_image["input_ids"][0].tolist(),
            [21510,  1058,  1032,    10,    10,    12,    10,    10,    13,  1010, 7493,  1681,  1278,  4701,  1307,  1278,  3937,  1063,  1349,  4290, 16002, 41150,  1058]
        )
        # fmt: on

    def test_processor_with_multiple_images_single_list(self):
        processor = self.processor_class.from_pretrained(self.tmpdirname)
        prompt_string = "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:"

        # Make small for checking image token expansion
        processor.image_processor.size = {"longest_edge": 30}
        processor.image_processor.patch_size = {"height": 2, "width": 2}

        # Test passing in an image
        inputs_image = processor(text=prompt_string, images=[self.image_0, self.image_1], return_tensors="pt")
        self.assertIn("input_ids", inputs_image)
        self.assertTrue(len(inputs_image["input_ids"]) == 1)
        self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_image["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
                    )
        # fmt: on

        # Test passing in a url
        inputs_url = processor(text=prompt_string, images=[self.url_0, self.url_1], return_tensors="pt")
        self.assertIn("input_ids", inputs_url)
        self.assertTrue(len(inputs_url["input_ids"]) == 1)
        self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_url["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
        )
        # fmt: on

        # Test passing in as a nested list
        inputs_url = processor(text=prompt_string, images=[[self.image_0, self.image_1]], return_tensors="pt")
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([2, 3, 32, 32]))

        # fmt: off
        self.assertEqual(
            inputs_url["input_ids"][0].tolist(),
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
        )
        # fmt: on

    def test_processor_with_multiple_images_multiple_lists(self):
        processor = self.processor_class.from_pretrained(self.tmpdirname)
        prompt_string = [
            "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:",
            "USER: [IMG]\nWhat's the content of the image? ASSISTANT:",
        ]
        processor.tokenizer.pad_token = "</s>"
        image_inputs = [[self.image_0, self.image_1], [self.image_2]]

        # Make small for checking image token expansion
        processor.image_processor.size = {"longest_edge": 30}
        processor.image_processor.patch_size = {"height": 2, "width": 2}

        # Test passing in an image
        inputs_image = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
        self.assertIn("input_ids", inputs_image)
        self.assertTrue(len(inputs_image["input_ids"]) == 2)
        self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_image["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
        )
        # fmt: on

        # Test passing in a url
        inputs_url = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
        self.assertIn("input_ids", inputs_url)
        self.assertTrue(len(inputs_url["input_ids"]) == 2)
        self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
        self.assertIsInstance(inputs_image["pixel_values"], torch.Tensor)
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 32, 32]))

        # fmt: off
        input_ids = inputs_url["input_ids"]
        self.assertEqual(
            input_ids[0].tolist(),
            # Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
        )
        # fmt: on

        # Test passing as a single flat list
        inputs_image = processor(
            text=prompt_string, images=[self.image_0, self.image_1, self.image_2], return_tensors="pt", padding=True
        )
        self.assertTrue(inputs_image["pixel_values"].shape == torch.Size([3, 3, 32, 32]))

        # fmt: off
        self.assertEqual(
            inputs_image["input_ids"][0].tolist(),
            [21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
        )
        # fmt: on

    def test_processor_returns_full_length_batches(self):
        # to avoid https://github.com/huggingface/transformers/issues/34204
        processor = self.processor_class.from_pretrained(self.tmpdirname)
        prompt_string = [
            "USER: [IMG]\nWhat's the content of the image? ASSISTANT:",
        ] * 5
        processor.tokenizer.pad_token = "</s>"
        image_inputs = [[self.image_0]] * 5

        # Make small for checking image token expansion
        processor.image_processor.size = {"longest_edge": 30}
        processor.image_processor.patch_size = {"height": 2, "width": 2}

        # Test passing in an image
        inputs_image = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
        self.assertIn("input_ids", inputs_image)
        self.assertTrue(len(inputs_image["input_ids"]) == 5)
        self.assertTrue(len(inputs_image["pixel_values"]) == 5)
