# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch PoolFormer model."""

import unittest

from transformers import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import Expectations, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import MODEL_MAPPING, PoolFormerConfig, PoolFormerForImageClassification, PoolFormerModel


if is_vision_available():
    from PIL import Image

    from transformers import PoolFormerImageProcessor


class PoolFormerConfigTester(ConfigTester):
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))


class PoolFormerModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        num_channels=3,
        num_encoder_blocks=4,
        depths=[2, 2, 2, 2],
        sr_ratios=[8, 4, 2, 1],
        hidden_sizes=[16, 32, 64, 128],
        downsampling_rates=[1, 4, 8, 16],
        is_training=False,
        use_labels=True,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.num_encoder_blocks = num_encoder_blocks
        self.sr_ratios = sr_ratios
        self.depths = depths
        self.hidden_sizes = hidden_sizes
        self.downsampling_rates = downsampling_rates
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = PoolFormerConfig(
            image_size=self.image_size,
            num_channels=self.num_channels,
            num_encoder_blocks=self.num_encoder_blocks,
            depths=self.depths,
            hidden_sizes=self.hidden_sizes,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values, labels

    def create_and_check_model(self, config, pixel_values, labels):
        model = PoolFormerModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        expected_height = expected_width = self.image_size // 32.0
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class PoolFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (PoolFormerModel, PoolFormerForImageClassification) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"image-feature-extraction": PoolFormerModel, "image-classification": PoolFormerForImageClassification}
        if is_torch_available()
        else {}
    )

    test_resize_embeddings = False
    has_attentions = False
    test_torch_exportable = True

    def setUp(self):
        self.model_tester = PoolFormerModelTester(self)
        self.config_tester = PoolFormerConfigTester(self, config_class=PoolFormerConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_batching_equivalence(self, atol=2e-4, rtol=2e-4):
        super().test_batching_equivalence(atol=atol, rtol=rtol)

    @unittest.skip(reason="PoolFormer does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="PoolFormer does not have get_input_embeddings method and get_output_embeddings methods")
    def test_model_get_set_embeddings(self):
        pass

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = self.model_tester.num_encoder_blocks
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.hidden_sizes[0],
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        if not self.model_tester.is_training:
            self.skipTest(reason="model_tester.is_training is set to False")

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @slow
    def test_model_from_pretrained(self):
        model_name = "sail/poolformer_s12"
        model = PoolFormerModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
class PoolFormerModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_image_classification_head(self):
        image_processor = PoolFormerImageProcessor()
        model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12").to(torch_device)

        inputs = image_processor(images=prepare_img(), return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expectations = Expectations(
            {
                (None, None): [-0.6113, 0.1685, -0.0492],
                ("cuda", 8): [-0.6113, 0.1685, -0.0492],
            }
        )
        expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
        torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=2e-4, atol=2e-4)
