# Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert_legacy import (
    BasicTokenizer,
    WordpieceTokenizer,
    _is_control,
    _is_punctuation,
    _is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow

from ...test_tokenization_common import TokenizerTesterMixin


class ProphetNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    from_pretrained_id = "microsoft/prophetnet-large-uncased"
    tokenizer_class = ProphetNetTokenizer
    test_rust_tokenizer = False

    @classmethod
    def setUpClass(cls):
        super().setUpClass()

        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(cls.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_input_output_texts(self, tokenizer):
        input_text = "UNwant\u00e9d,running"
        output_text = "unwanted, running"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = self.tokenizer_class(self.vocab_file)

        tokens = tokenizer.tokenize("UNwant\u00e9d,running")
        self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])

    def test_chinese(self):
        tokenizer = BasicTokenizer()

        self.assertListEqual(tokenizer.tokenize("ah\u535a\u63a8zz"), ["ah", "\u535a", "\u63a8", "zz"])

    def test_basic_tokenizer_lower(self):
        tokenizer = BasicTokenizer(do_lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU?  "), ["hello", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])

    def test_basic_tokenizer_lower_strip_accents_false(self):
        tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hällo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["h\u00e9llo"])

    def test_basic_tokenizer_lower_strip_accents_true(self):
        tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hallo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])

    def test_basic_tokenizer_lower_strip_accents_default(self):
        tokenizer = BasicTokenizer(do_lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hallo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00e9llo"), ["hello"])

    def test_basic_tokenizer_no_lower(self):
        tokenizer = BasicTokenizer(do_lower_case=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_no_lower_strip_accents_false(self):
        tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_no_lower_strip_accents_true(self):
        tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_respects_never_split_tokens(self):
        tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
        )

    def test_wordpiece_tokenizer(self):
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]

        vocab = {}
        for i, token in enumerate(vocab_tokens):
            vocab[token] = i
        tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")

        self.assertListEqual(tokenizer.tokenize(""), [])

        self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])

        self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])

    @require_torch
    def test_prepare_batch(self):
        tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased")

        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        expected_src_tokens = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]
        batch = tokenizer(src_text, padding=True, return_tensors="pt")
        self.assertIsInstance(batch, BatchEncoding)
        result = list(batch.input_ids.numpy()[0])
        self.assertListEqual(expected_src_tokens, result)

        self.assertEqual((2, 9), batch.input_ids.shape)
        self.assertEqual((2, 9), batch.attention_mask.shape)

    def test_is_whitespace(self):
        self.assertTrue(_is_whitespace(" "))
        self.assertTrue(_is_whitespace("\t"))
        self.assertTrue(_is_whitespace("\r"))
        self.assertTrue(_is_whitespace("\n"))
        self.assertTrue(_is_whitespace("\u00a0"))

        self.assertFalse(_is_whitespace("A"))
        self.assertFalse(_is_whitespace("-"))

    def test_is_control(self):
        self.assertTrue(_is_control("\u0005"))

        self.assertFalse(_is_control("A"))
        self.assertFalse(_is_control(" "))
        self.assertFalse(_is_control("\t"))
        self.assertFalse(_is_control("\r"))

    def test_is_punctuation(self):
        self.assertTrue(_is_punctuation("-"))
        self.assertTrue(_is_punctuation("$"))
        self.assertTrue(_is_punctuation("`"))
        self.assertTrue(_is_punctuation("."))

        self.assertFalse(_is_punctuation("A"))
        self.assertFalse(_is_punctuation(" "))

    @slow
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased")

        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_sentence == text + [102]
        assert encoded_pair == text + [102] + text_2 + [102]
