# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch RegNet model."""

import unittest
from functools import cached_property

from transformers import RegNetConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import Expectations, is_flaky, require_torch, require_vision, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import RegNetForImageClassification, RegNetModel


if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class RegNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        image_size=32,
        num_channels=3,
        embeddings_size=10,
        hidden_sizes=[10, 20, 30, 40],
        depths=[1, 1, 2, 1],
        is_training=True,
        use_labels=True,
        hidden_act="relu",
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.embeddings_size = embeddings_size
        self.hidden_sizes = hidden_sizes
        self.depths = depths
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.num_labels = num_labels
        self.scope = scope
        self.num_stages = len(hidden_sizes)

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return RegNetConfig(
            num_channels=self.num_channels,
            embeddings_size=self.embeddings_size,
            hidden_sizes=self.hidden_sizes,
            depths=self.depths,
            hidden_act=self.hidden_act,
            num_labels=self.num_labels,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = RegNetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected last hidden states: B, C, H // 32, W // 32
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = RegNetForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class RegNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as RegNet does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"image-feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
        if is_torch_available()
        else {}
    )

    test_resize_embeddings = False
    has_attentions = False
    test_torch_exportable = True

    def setUp(self):
        self.model_tester = RegNetModelTester(self)
        self.config_tester = ConfigTester(
            self,
            config_class=RegNetConfig,
            has_text_modality=False,
            common_properties=["num_channels", "hidden_sizes"],
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @is_flaky(description="Larger difference with A10. Still flaky after setting larger tolerance")
    def test_batching_equivalence(self, atol=3e-5, rtol=3e-5):
        super().test_batching_equivalence(atol=atol, rtol=rtol)

    @unittest.skip(reason="RegNet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="RegNet does not support input and output embeddings")
    def test_model_get_set_embeddings(self):
        pass

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_stages = self.model_tester.num_stages
            self.assertEqual(len(hidden_states), expected_num_stages + 1)

            # RegNet's feature maps are of shape (batch_size, num_channels, height, width)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.image_size // 2, self.model_tester.image_size // 2],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        layers_type = ["basic", "bottleneck"]
        for model_class in self.all_model_classes:
            for layer_type in layers_type:
                config.layer_type = layer_type
                inputs_dict["output_hidden_states"] = True
                check_hidden_states_output(inputs_dict, config, model_class)

                # check that output_hidden_states also work using config
                del inputs_dict["output_hidden_states"]
                config.output_hidden_states = True

                check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model_name = "facebook/regnet-y-040"
        model = RegNetModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class RegNetModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expectations = Expectations(
            {
                (None, None): [-0.4180, -1.5051, -3.4836],
                ("cuda", 8): [-0.4180, -1.5051, -3.4836],
            }
        )
        expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
        torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=2e-4, atol=2e-4)
