# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Hubert model."""

import math
import unittest

import pytest

from transformers import SEWDConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torchcodec, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        SEWDForCTC,
        SEWDForSequenceClassification,
        SEWDModel,
        Wav2Vec2FeatureExtractor,
        Wav2Vec2Processor,
    )
    from transformers.models.hubert.modeling_hubert import _compute_mask_indices


class SEWDModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=32,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(64, 32, 32),
        conv_stride=(5, 2, 1),
        conv_kernel=(10, 3, 1),
        conv_bias=False,
        num_conv_pos_embeddings=31,
        num_conv_pos_embedding_groups=2,
        squeeze_factor=2,
        max_position_embeddings=512,
        position_buckets=256,
        share_att_key=True,
        relative_attention=True,
        position_biased_input=False,
        pos_att_type=("p2c", "c2p"),
        norm_rel_ebd="layer_norm",
        num_hidden_layers=2,
        num_attention_heads=2,
        hidden_dropout=0.1,
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.squeeze_factor = squeeze_factor
        self.max_position_embeddings = max_position_embeddings
        self.position_buckets = position_buckets
        self.share_att_key = share_att_key
        self.relative_attention = relative_attention
        self.position_biased_input = position_biased_input
        self.pos_att_type = pos_att_type
        self.norm_rel_ebd = norm_rel_ebd
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout = hidden_dropout
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length // self.squeeze_factor

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return SEWDConfig(
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            squeeze_factor=self.squeeze_factor,
            max_position_embeddings=self.max_position_embeddings,
            position_buckets=self.position_buckets,
            share_att_key=self.share_att_key,
            relative_attention=self.relative_attention,
            position_biased_input=self.position_biased_input,
            pos_att_type=self.pos_att_type,
            norm_rel_ebd=self.norm_rel_ebd,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout=self.hidden_dropout,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
        )

    def create_and_check_model(self, config, input_values, attention_mask):
        model = SEWDModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def check_ctc_loss(self, config, input_values, *args):
        model = SEWDForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))

    def check_ctc_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = SEWDForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
        model.freeze_feature_encoder()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lengths are at least
                # one shorter than logit lengths to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_seq_classifier_loss(self, config, input_values, *args):
        model = SEWDForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = SEWDForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = SEWDForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

        with pytest.raises(ValueError):
            model(input_values, labels=labels)

    def prepare_config_and_inputs_for_common(self):
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_torch
class SEWDModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (SEWDForCTC, SEWDModel, SEWDForSequenceClassification) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "audio-classification": SEWDForSequenceClassification,
            "automatic-speech-recognition": SEWDForCTC,
            "feature-extraction": SEWDModel,
        }
        if is_torch_available()
        else {}
    )

    def setUp(self):
        self.model_tester = SEWDModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SEWDConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

    @unittest.skip(reason="Model has no inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Model has input_values instead of input_ids")
    def test_forward_signature(self):
        pass

    @unittest.skip(reason="Model has no tokens embeddings")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip(reason="Model has no inputs_embeds")
    def test_model_get_set_embeddings(self):
        pass

    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.fill_(3)
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)

    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k")
        self.assertIsNotNone(model)


@require_torch
class SEWDUtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)


@require_torch
@require_torchcodec
@slow
class SEWDModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        from datasets import load_dataset

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def test_inference_pretrained_batched(self):
        model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("asapp/sew-d-tiny-100k")

        input_speech = self._load_datasamples(2)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)

        with torch.no_grad():
            outputs = model(input_values).last_hidden_state

        # expected outputs taken from the original SEW-D implementation
        expected_outputs_first = torch.tensor(
            [
                [
                    [-0.1619, 0.6995, 0.4062, -0.1014],
                    [-0.1364, 0.5960, 0.0952, -0.0873],
                    [-0.1572, 0.5718, 0.4228, -0.0864],
                    [-0.1325, 0.6823, 0.1387, -0.0871],
                ],
                [
                    [-0.1296, 0.4008, 0.4952, -0.1450],
                    [-0.1152, 0.3693, 0.3037, -0.1290],
                    [-0.1194, 0.6074, 0.3531, -0.1466],
                    [-0.1113, 0.3135, 0.2224, -0.1338],
                ],
            ],
            device=torch_device,
        )
        expected_outputs_last = torch.tensor(
            [
                [
                    [-0.1577, 0.5108, 0.8553, 0.2550],
                    [-0.1530, 0.3580, 0.6143, 0.2672],
                    [-0.1535, 0.4954, 0.8503, 0.1387],
                    [-0.1572, 0.3363, 0.6217, 0.1490],
                ],
                [
                    [-0.1338, 0.5459, 0.9607, -0.1133],
                    [-0.1502, 0.3738, 0.7313, -0.0986],
                    [-0.0953, 0.4708, 1.0821, -0.0944],
                    [-0.1474, 0.3598, 0.7248, -0.0748],
                ],
            ],
            device=torch_device,
        )
        expected_output_sum = 54201.0469

        torch.testing.assert_close(outputs[:, :4, :4], expected_outputs_first, rtol=1e-3, atol=1e-3)
        torch.testing.assert_close(outputs[:, -4:, -4:], expected_outputs_last, rtol=1e-3, atol=1e-3)
        self.assertTrue(abs(outputs.sum() - expected_output_sum) < 1)

    def test_inference_ctc_batched(self):
        model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h", do_lower_case=True)

        input_speech = self._load_datasamples(2)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "swet covered breon's body trickling into the titlowing closs that was the only garmened he war",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
