# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        SqueezeBertForMaskedLM,
        SqueezeBertForMultipleChoice,
        SqueezeBertForQuestionAnswering,
        SqueezeBertForSequenceClassification,
        SqueezeBertForTokenClassification,
        SqueezeBertModel,
    )


class SqueezeBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=64,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        q_groups=2,
        k_groups=2,
        v_groups=2,
        post_attention_groups=2,
        intermediate_groups=4,
        output_groups=1,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.q_groups = q_groups
        self.k_groups = k_groups
        self.v_groups = v_groups
        self.post_attention_groups = post_attention_groups
        self.intermediate_groups = intermediate_groups
        self.output_groups = output_groups

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return SqueezeBertConfig(
            embedding_size=self.hidden_size,
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            attention_probs_dropout_prob=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            q_groups=self.q_groups,
            k_groups=self.k_groups,
            v_groups=self.v_groups,
            post_attention_groups=self.post_attention_groups,
            intermediate_groups=self.intermediate_groups,
            output_groups=self.output_groups,
        )

    def create_and_check_squeezebert_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = SqueezeBertModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_squeezebert_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = SqueezeBertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_squeezebert_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = SqueezeBertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

    def create_and_check_squeezebert_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = SqueezeBertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_squeezebert_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = SqueezeBertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def create_and_check_squeezebert_for_multiple_choice(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = SqueezeBertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        result = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            labels=choice_labels,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            SqueezeBertModel,
            SqueezeBertForMaskedLM,
            SqueezeBertForMultipleChoice,
            SqueezeBertForQuestionAnswering,
            SqueezeBertForSequenceClassification,
            SqueezeBertForTokenClassification,
        )
        if is_torch_available()
        else None
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": SqueezeBertModel,
            "fill-mask": SqueezeBertForMaskedLM,
            "question-answering": SqueezeBertForQuestionAnswering,
            "text-classification": SqueezeBertForSequenceClassification,
            "token-classification": SqueezeBertForTokenClassification,
            "zero-shot": SqueezeBertForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )

    test_resize_embeddings = True

    def setUp(self):
        self.model_tester = SqueezeBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_squeezebert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model_name = "squeezebert/squeezebert-uncased"
        model = SqueezeBertModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


@require_sentencepiece
@require_tokenizers
@require_torch
class SqueezeBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_classification_head(self):
        model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli")

        input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
        self.assertEqual(output.shape, expected_shape)
        expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]])
        torch.testing.assert_close(output, expected_tensor, rtol=1e-4, atol=1e-4)
