# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import unittest

from transformers import UMT5Config, is_torch_available
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    import torch.nn.functional as F

    from transformers import (
        AutoTokenizer,
        UMT5EncoderModel,
        UMT5ForConditionalGeneration,
        UMT5ForQuestionAnswering,
        UMT5ForSequenceClassification,
        UMT5ForTokenClassification,
        UMT5Model,
    )


# Copied from test.models.t5.test_modeling_t5.T5ModelTester with T5->UMT5
class UMT5ModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        decoder_seq_length=7,
        # For common tests
        is_training=True,
        use_attention_mask=True,
        use_labels=False,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        decoder_start_token_id=0,
        scope=None,
        decoder_layers=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.scope = None
        self.decoder_layers = decoder_layers

    def prepare_inputs_dict(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask=None,
        decoder_attention_mask=None,
    ):
        if attention_mask is None:
            attention_mask = input_ids.ne(config.pad_token_id)
        if decoder_attention_mask is None:
            decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
        return {
            "input_ids": input_ids,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
        }

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        # we need to clamp the input ids here to avoid having pad token in between
        # this is because for NllbMoe the position_ids are prepared such that
        # all pad tokens have pos id = 2 and rest are between 2..seq_length
        # and the seq_length here is seq_length - num_pad_tokens
        # but when using past, there is no way of knowing if the past input ids had
        # pad tokens in them, which results in incorrect seq_length and which in turn results in
        # position_ids being off by num_pad_tokens in past input
        input_ids = input_ids.clamp(self.pad_token_id + 2)
        input_ids[:, -1] = self.eos_token_id  # Eos Token
        decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1)

        config = self.get_config()
        config.encoder_attention_heads = config.num_attention_heads
        input_dict = self.prepare_inputs_dict(config, input_ids, decoder_input_ids)
        return config, input_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_pipeline_config(self):
        return UMT5Config(
            vocab_size=166,  # t5 forces 100 extra tokens
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def get_config(self):
        return UMT5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UMT5Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        decoder_output = result.last_hidden_state
        decoder_past = result.past_key_values
        encoder_output = result.encoder_last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_dict,
    ):
        model = UMT5Model(config=config).to(torch_device).half().eval()
        output = model(**input_dict)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())

    def create_and_check_with_sequence_classification_head(
        self,
        config,
        input_dict,
    ):
        labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device)
        model = UMT5ForSequenceClassification(config=config).to(torch_device).eval()
        outputs = model(**input_dict, labels=labels)
        # self.parent.assertEqual(len(outputs), 4)
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels))
        self.parent.assertEqual(outputs["loss"].size(), ())


@require_torch
class UMT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (UMT5Model, UMT5ForConditionalGeneration, UMT5ForSequenceClassification, UMT5ForQuestionAnswering)
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": UMT5Model,
            "question-answering": UMT5ForQuestionAnswering,
            "summarization": UMT5ForConditionalGeneration,
            "text-classification": UMT5ForSequenceClassification,
            "text2text-generation": UMT5ForConditionalGeneration,
            "translation": UMT5ForConditionalGeneration,
            "zero-shot": UMT5ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True

    test_missing_keys = True
    # The small UMT5 model needs higher percentages for CPU/MP tests
    model_split_percents = [0.5, 0.8, 0.9]

    def setUp(self):
        self.model_tester = UMT5ModelTester(self)

    # `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file
    # `src/transformers/data/processors/squad.py` (where this test fails for this model)
    def is_pipeline_test_to_skip(
        self,
        pipeline_test_case_name,
        config_class,
        model_architecture,
        tokenizer_name,
        image_processor_name,
        feature_extractor_name,
        processor_name,
    ):
        if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
            return True

        return False

    # UMT5ForSequenceClassification does not support inputs_embeds
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (UMT5Model, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    # overwrite because T5 doesn't accept position ids as input and expects `decoder_input_ids`
    def test_custom_4d_attention_mask(self):
        for model_class in self.all_generative_model_classes:
            config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config).to(device=torch_device, dtype=torch.float32)

            (
                input_ids,
                _,
                input_ids_shared_prefix,
                mask_shared_prefix,
                _,
            ) = self._get_custom_4d_mask_test_data()

            logits = model.forward(
                decoder_input_ids=input_ids,
                input_ids=input_dict["input_ids"][:3],
            ).logits
            # logits.shape == torch.Size([3, 4, ...])

            logits_shared_prefix = model(
                input_ids=input_dict["input_ids"][:1],
                decoder_input_ids=input_ids_shared_prefix,
                decoder_attention_mask=mask_shared_prefix,
            )[0]
            # logits_shared_prefix.shape == torch.Size([1, 6, ...])

            out_last_tokens = logits[:, -1, :]  # last tokens in each batch line
            out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :]  # last three tokens

            # comparing softmax-normalized logits:
            normalized_0 = F.softmax(out_last_tokens)
            normalized_1 = F.softmax(out_shared_prefix_last_tokens)
            torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-4)

    def test_with_sequence_classification_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Can't do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="UMT5 has no separate base model without a head.")
    def test_model_base_model_prefix(self):
        pass


# Copied from tests.models.t5.test_modeling_t5.T5EncoderOnlyModelTester with T5->UMT5
class UMT5EncoderOnlyModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        # For common tests
        use_attention_mask=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        is_training=False,
        dropout_rate=0.1,
        initializer_factor=0.002,
        is_encoder_decoder=False,
        eos_token_id=1,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        # For common tests
        self.seq_length = self.encoder_seq_length
        self.use_attention_mask = use_attention_mask
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.is_encoder_decoder = is_encoder_decoder
        self.scope = None
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)

        config = UMT5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        model = UMT5EncoderModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            attention_mask=attention_mask,
        )
        result = model(input_ids=input_ids)
        encoder_output = result.last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        model = UMT5EncoderModel(config=config).to(torch_device).half().eval()
        output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())

    def create_and_check_with_token_classification_head(
        self,
        config,
        input_ids,
        attention_mask,
    ):
        labels = torch.tensor([1] * self.seq_length * self.batch_size, dtype=torch.long, device=torch_device)
        model = UMT5ForTokenClassification(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            labels=labels,
            attention_mask=attention_mask,
        )
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.seq_length, config.num_labels))
        self.parent.assertEqual(outputs["loss"].size(), ())

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


# Copied from tests.models.t5.test_modeling_t5.T5EncoderOnlyModelTest with T5->UMT5
class UMT5EncoderOnlyModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (UMT5EncoderModel, UMT5ForTokenClassification) if is_torch_available() else ()

    test_resize_embeddings = False
    pipeline_model_mapping = (
        {
            "token-classification": UMT5ForTokenClassification,
        }
        if is_torch_available()
        else {}
    )

    def setUp(self):
        self.model_tester = UMT5EncoderOnlyModelTester(self)
        self.config_tester = ConfigTester(self, config_class=UMT5Config, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Can't do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    def test_with_token_classification_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_token_classification_head(*config_and_inputs)

    def is_pipeline_test_to_skip(
        self,
        pipeline_test_case_name,
        config_class,
        model_architecture,
        tokenizer_name,
        image_processor_name,
        feature_extractor_name,
        processor_name,
    ):
        if tokenizer_name is None:
            return True

        # `UMT5EncoderOnlyModelTest` is not working well with slow tokenizers (for some models) and we don't want to touch the file
        # `src/transformers/data/processors/squad.py` (where this test fails for this model)
        if pipeline_test_case_name == "TokenClassificationPipelineTests" and not tokenizer_name.endswith("Fast"):
            return True

        return False


@require_torch
@require_sentencepiece
@require_tokenizers
class Umt5IntegrationTest(unittest.TestCase):
    @slow
    @unittest.skip(
        "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged"
    )
    def test_small_integration_test(self):
        """
        For comparison run the kaggle notebook available here : https://www.kaggle.com/arthurzucker/umt5-inference
        """

        model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=True).to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=False, legacy=False)
        input_text = [
            "Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
            "No se como puedo <extra_id_0>.",
            "This is the reason why we <extra_id_0> them.",
            "The <extra_id_0> walks in <extra_id_1>, seats",
            "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
        ]
        input_ids = tokenizer(input_text, return_tensors="pt", padding=True).input_ids
        # fmt: off
        EXPECTED_IDS = torch.tensor(
            [
                [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [  1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
                [   517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
            ]
        )
        # fmt: on
        torch.testing.assert_close(input_ids, EXPECTED_IDS)

        generated_ids = model.generate(input_ids.to(torch_device))
        EXPECTED_FILLING = [
            "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
            "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
        ]
        filling = tokenizer.batch_decode(generated_ids)
        self.assertEqual(filling, EXPECTED_FILLING)
