# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VITS model."""

import copy
import os
import tempfile
import unittest

import numpy as np

from transformers import PreTrainedConfig, VitsConfig
from transformers.testing_utils import (
    Expectations,
    is_flaky,
    is_torch_available,
    require_torch,
    require_torch_fp16,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
from transformers.trainer_utils import set_seed

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    global_rng,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import VitsModel, VitsTokenizer


CONFIG_NAME = "config.json"
GENERATION_CONFIG_NAME = "generation_config.json"


def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__:
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
            setattr(configs_no_init, key, 1e-10)
        if isinstance(getattr(configs_no_init, key, None), PreTrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
    return configs_no_init


@require_torch
class VitsModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        is_training=False,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=64,
        flow_size=16,
        vocab_size=38,
        spectrogram_bins=8,
        duration_predictor_num_flows=2,
        duration_predictor_filter_channels=16,
        prior_encoder_num_flows=2,
        upsample_initial_channel=16,
        upsample_rates=[8, 2],
        upsample_kernel_sizes=[16, 4],
        resblock_kernel_sizes=[3, 7],
        resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.flow_size = flow_size
        self.vocab_size = vocab_size
        self.spectrogram_bins = spectrogram_bins
        self.duration_predictor_num_flows = duration_predictor_num_flows
        self.duration_predictor_filter_channels = duration_predictor_filter_channels
        self.prior_encoder_num_flows = prior_encoder_num_flows
        self.upsample_initial_channel = upsample_initial_channel
        self.upsample_rates = upsample_rates
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2)
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_config(self):
        return VitsConfig(
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            flow_size=self.flow_size,
            vocab_size=self.vocab_size,
            spectrogram_bins=self.spectrogram_bins,
            duration_predictor_num_flows=self.duration_predictor_num_flows,
            prior_encoder_num_flows=self.prior_encoder_num_flows,
            duration_predictor_filter_channels=self.duration_predictor_filter_channels,
            posterior_encoder_num_wavenet_layers=self.num_hidden_layers,
            upsample_initial_channel=self.upsample_initial_channel,
            upsample_rates=self.upsample_rates,
            upsample_kernel_sizes=self.upsample_kernel_sizes,
            resblock_kernel_sizes=self.resblock_kernel_sizes,
            resblock_dilation_sizes=self.resblock_dilation_sizes,
        )

    def create_and_check_model_forward(self, config, inputs_dict):
        model = VitsModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        result = model(input_ids, attention_mask=attention_mask)
        self.parent.assertEqual((self.batch_size, 624), result.waveform.shape)


@require_torch
class VitsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (VitsModel,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": VitsModel, "text-to-audio": VitsModel} if is_torch_available() else {}
    )
    is_encoder_decoder = False

    test_resize_embeddings = False
    has_attentions = False

    def setUp(self):
        self.model_tester = VitsModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VitsConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    # TODO: @ydshieh
    @is_flaky(description="torch 2.2.0 gives `Timeout >120.0s`")
    def test_pipeline_feature_extraction(self):
        super().test_pipeline_feature_extraction()

    @is_flaky(description="torch 2.2.0 gives `Timeout >120.0s`")
    def test_pipeline_feature_extraction_fp16(self):
        super().test_pipeline_feature_extraction_fp16()

    @unittest.skip(reason="Need to fix this after #26538")
    def test_model_forward(self):
        set_seed(12345)
        global_rng.seed(12345)
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs)

    @require_torch_multi_gpu
    # override to force all elements of the batch to have the same sequence length across GPUs
    def test_multi_gpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.use_stochastic_duration_prediction = False

        # move input tensors to cuda:O
        for key, value in inputs_dict.items():
            if torch.is_tensor(value):
                # make all elements of the batch the same -> ensures the output seq lengths are the same for DP
                value[1:] = value[0]
                inputs_dict[key] = value.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            set_seed(555)
            with torch.no_grad():
                _ = model(**self._prepare_for_class(inputs_dict, model_class)).waveform

    @unittest.skip(reason="VITS is not deterministic")
    def test_determinism(self):
        pass

    @unittest.skip(reason="VITS is not deterministic")
    def test_batching_equivalence(self):
        pass

    @unittest.skip(reason="VITS has no inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="VITS has no input embeddings")
    def test_model_get_set_embeddings(self):
        pass

    # override since the model is not deterministic, so we need to set the seed for each forward pass
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                set_seed(0)
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                set_seed(0)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (list, tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif isinstance(tuple_object, dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )

    # override since the model is not deterministic, so we need to set the seed for each forward pass
    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                set_seed(0)
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

                model = model_class.from_pretrained(tmpdirname)
                model.to(torch_device)
                with torch.no_grad():
                    set_seed(0)
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)

    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.fill_(3)
        if hasattr(module, "weight_g") and module.weight_g is not None:
            module.weight_g.data.fill_(3)
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.fill_(3)


@require_torch
@slow
class VitsModelIntegrationTests(unittest.TestCase):
    def test_forward(self):
        # GPU gives different results than CPU
        torch_device = "cpu"

        model = VitsModel.from_pretrained("facebook/mms-tts-eng")
        model.to(torch_device)

        tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")

        set_seed(555)  # make deterministic

        input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!"
        input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device)

        with torch.no_grad():
            outputs = model(input_ids)

        self.assertEqual(outputs.waveform.shape, (1, 87040))
        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                -0.0042,  0.0176,  0.0354,  0.0504,  0.0621,  0.0777,  0.0980,  0.1224,
                 0.1475,  0.1679,  0.1817,  0.1832,  0.1713,  0.1542,  0.1384,  0.1256,
                 0.1147,  0.1066,  0.1026,  0.0958,  0.0823,  0.0610,  0.0340,  0.0022,
                -0.0337, -0.0677, -0.0969, -0.1178, -0.1311, -0.1363
            ]
        )
        # fmt: on
        torch.testing.assert_close(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)

    @require_torch_fp16
    def test_forward_fp16(self):
        # GPU gives different results than CPU
        torch_device = "cpu"

        model = VitsModel.from_pretrained("facebook/mms-tts-eng", dtype=torch.float16)
        model.to(torch_device)

        tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")

        set_seed(555)  # make deterministic

        input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!"
        input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device)

        with torch.no_grad():
            outputs = model(input_ids)

        self.assertEqual(outputs.waveform.shape, (1, 87040))
        # fmt: off
        expected_logits = Expectations({
            ("cuda", None): [
                0.0101,  0.0318,  0.0489,  0.0627,  0.0728,  0.0865,  0.1053,  0.1279,
                0.1514,  0.1703,  0.1827,  0.1829,  0.1694,  0.1509,  0.1332,  0.1188,
                0.1066,  0.0978,  0.0936,  0.0867,  0.0724,  0.0493,  0.0197, -0.0141,
                -0.0501, -0.0817, -0.1065, -0.1223, -0.1311, -0.1339
            ],
            ("rocm", (9, 5)): [
                0.0097,  0.0315,  0.0486,  0.0626,  0.0728,  0.0865,  0.1053,  0.1279,
                0.1515,  0.1703,  0.1827,  0.1829,  0.1694,  0.1509,  0.1333,  0.1189,
                0.1066,  0.0978,  0.0937,  0.0868,  0.0726,  0.0496,  0.0200, -0.0138,
                -0.0500, -0.0817, -0.1067, -0.1225, -0.1313, -0.1340
            ]
        })
        EXPECTED_LOGITS = torch.tensor(expected_logits.get_expectation(), dtype=torch.float16)

        # fmt: on
        torch.testing.assert_close(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)
