# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ViViT model."""

import copy
import inspect
import unittest
from functools import cached_property

import numpy as np
from huggingface_hub import hf_hub_download

from transformers import VivitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import Expectations, require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VivitForVideoClassification, VivitModel


if is_vision_available():
    from transformers import VivitImageProcessor


class VivitModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        is_training=True,
        use_labels=True,
        num_labels=10,
        image_size=10,
        num_frames=8,  # decreased, because default 32 takes too much RAM at inference
        tubelet_size=[2, 4, 4],
        num_channels=3,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu_fast",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        initializer_range=0.02,
        layer_norm_eps=1e-06,
        qkv_bias=True,
        scope=None,
        attn_implementation="eager",
        mask_ratio=0.5,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_labels = use_labels
        self.num_labels = num_labels
        self.image_size = image_size
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        self.num_channels = num_channels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.qkv_bias = qkv_bias
        self.scope = scope
        self.attn_implementation = attn_implementation

        self.seq_length = (
            (self.image_size // self.tubelet_size[2])
            * (self.image_size // self.tubelet_size[1])
            * (self.num_frames // self.tubelet_size[0])
        ) + 1  # CLS token
        self.mask_ratio = mask_ratio
        self.num_masks = int(mask_ratio * self.seq_length)

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
        )

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        config = VivitConfig(
            num_frames=self.num_frames,
            image_size=self.image_size,
            tubelet_size=self.tubelet_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            initializer_range=self.initializer_range,
            layer_norm_eps=self.layer_norm_eps,
            qkv_bias=self.qkv_bias,
            attn_implementation=self.attn_implementation,
        )
        config.num_labels = self.num_labels
        return config

    def create_and_check_model(self, config, pixel_values, labels):
        model = VivitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_video_classification(self, config, pixel_values, labels):
        model = VivitForVideoClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values)

        # verify the logits shape
        expected_shape = torch.Size((self.batch_size, self.num_labels))
        self.parent.assertEqual(result.logits.shape, expected_shape)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class VivitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Vivit does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (VivitModel, VivitForVideoClassification) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": VivitModel, "video-classification": VivitForVideoClassification}
        if is_torch_available()
        else {}
    )

    test_resize_embeddings = False
    test_torch_exportable = True

    def setUp(self):
        self.model_tester = VivitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VivitConfig, has_text_modality=False, hidden_size=37)

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)

        if return_labels:
            if model_class in get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING):
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="Vivit does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_get_set_embeddings(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            self.assertEqual(arg_names[0], "pixel_values")

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_video_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_video_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model_name = "google/vivit-b-16x2-kinetics400"
        model = VivitModel.from_pretrained(model_name)
        self.assertIsNotNone(model)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            seq_len = self.model_tester.seq_length

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states
            expected_num_layers = self.model_tester.num_hidden_layers + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)


# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
    file = hf_hub_download(
        repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_32_frames.npy", repo_type="dataset"
    )
    video = np.load(file)
    return list(video)


@require_torch
@require_vision
class VivitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return VivitImageProcessor() if is_vision_available() else None

    @slow
    def test_inference_for_video_classification(self):
        model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400").to(torch_device)

        image_processor = self.default_image_processor
        video = prepare_video()
        inputs = image_processor(video, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 400))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expectations = Expectations(
            {
                (None, None): [-0.9498, 2.7971, -1.4049, 0.1024, -1.8353],
                ("cuda", 8): [-0.9498, 2.7971, -1.4049, 0.1025, -1.8353],
            }
        )
        expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
        torch.testing.assert_close(outputs.logits[0, :5], expected_slice, rtol=2e-4, atol=2e-4)

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # Vivit models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400").to(torch_device)

        image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2-kinetics400")
        video = prepare_video()
        inputs = image_processor(
            video, size={"shortest_edge": 480}, crop_size={"height": 232, "width": 232}, return_tensors="pt"
        )
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits shape
        expected_shape = torch.Size((1, 3137, 768))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
