# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch XCLIP model."""

import inspect
import tempfile
import unittest

import numpy as np
from huggingface_hub import hf_hub_download

from transformers import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig
from transformers.testing_utils import (
    Expectations,
    require_torch,
    require_torch_multi_gpu,
    require_vision,
    slow,
    torch_device,
)
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import XCLIPModel, XCLIPTextModel, XCLIPVisionModel


if is_vision_available():
    from transformers import XCLIPProcessor


class XCLIPVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=8,
        image_size=30,
        patch_size=2,
        num_channels=3,
        num_frames=8,  # important; the batch size * time must be divisible by the number of frames
        is_training=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        mit_hidden_size=64,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_frames = num_frames
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.mit_hidden_size = mit_hidden_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [self.batch_size * self.num_frames, self.num_channels, self.image_size, self.image_size]
        )
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return XCLIPVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            num_frames=self.num_frames,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            mit_hidden_size=self.mit_hidden_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = XCLIPVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size * self.num_frames, num_patches + 1, self.hidden_size)
        )
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_frames, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class XCLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as X-CLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (XCLIPVisionModel,) if is_torch_available() else ()

    test_resize_embeddings = False

    def setUp(self):
        self.model_tester = XCLIPVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=XCLIPVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="X-CLIP does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_get_set_embeddings(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip
    def test_training(self):
        pass

    @unittest.skip
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model_name = "microsoft/xclip-base-patch32"
        model = XCLIPVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)

    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            print("Model class:", model_class)

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # we add 1 here due to the special message token in X-CLIP's vision encoder
        seq_len = getattr(self.model_tester, "seq_length", None) + 1
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(len(outputs.attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(outputs.attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length],
            )

    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = nn.DataParallel(model)
            with torch.no_grad():
                test = self._prepare_for_class(inputs_dict, model_class)
                for k, v in test.items():
                    if isinstance(v, torch.Tensor):
                        print(k, v.shape)
                    else:
                        print(k, v)
                _ = model(**self._prepare_for_class(inputs_dict, model_class))


class XCLIPTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=8,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return XCLIPTextConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = XCLIPTextModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class XCLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (XCLIPTextModel,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = XCLIPTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XCLIPTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip
    def test_training(self):
        pass

    @unittest.skip
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="X-CLIP does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model_name = "microsoft/xclip-base-patch32"
        model = XCLIPTextModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


class XCLIPModelTester:
    def __init__(
        self,
        parent,
        text_kwargs=None,
        vision_kwargs=None,
        projection_dim=64,
        mit_hidden_size=64,
        is_training=True,
    ):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

        self.parent = parent
        self.projection_dim = projection_dim
        self.mit_hidden_size = mit_hidden_size
        self.text_model_tester = XCLIPTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = XCLIPVisionModelTester(parent, **vision_kwargs)
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, _ = self.vision_model_tester.prepare_config_and_inputs()
        pixel_values = floats_tensor(
            [
                self.vision_model_tester.batch_size,
                self.vision_model_tester.num_frames,
                self.vision_model_tester.num_channels,
                self.vision_model_tester.image_size,
                self.vision_model_tester.image_size,
            ]
        )

        config = self.get_config()

        return config, input_ids, attention_mask, pixel_values

    def get_config(self):
        return XCLIPConfig(
            text_config=self.text_model_tester.get_config().to_dict(),
            vision_config=self.vision_model_tester.get_config().to_dict(),
            projection_dim=self.projection_dim,
        )

    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = XCLIPModel(config).to(torch_device).eval()
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
        self.parent.assertEqual(
            result.logits_per_video.shape,
            (self.vision_model_tester.batch_size, self.text_model_tester.batch_size),
        )
        self.parent.assertEqual(
            result.logits_per_text.shape,
            (self.text_model_tester.batch_size, self.vision_model_tester.batch_size),
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": True,
        }
        return config, inputs_dict


@require_torch
class XCLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (XCLIPModel,) if is_torch_available() else ()
    pipeline_model_mapping = {"feature-extraction": XCLIPModel} if is_torch_available() else {}

    test_resize_embeddings = False
    test_attention_outputs = False
    maxdiff = None

    def setUp(self):
        self.model_tester = XCLIPModelTester(self)
        common_properties = ["projection_dim", "prompt_layers", "prompt_num_attention_heads"]
        self.config_tester = ConfigTester(
            self, config_class=XCLIPConfig, has_text_modality=False, common_properties=common_properties
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="Hidden_states is tested in individual model tests")
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Retain_grad is tested in individual model tests")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="XCLIPModel does not have input/output embeddings")
    def test_model_get_set_embeddings(self):
        pass

    @unittest.skip(reason="XCLIPModel does not support feedforward chunking")
    def test_feed_forward_chunking(self):
        pass

    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save XCLIPConfig and check if we can load XCLIPVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = XCLIPVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save XCLIPConfig and check if we can load XCLIPTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = XCLIPTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

    @slow
    def test_model_from_pretrained(self):
        model_name = "microsoft/xclip-base-patch32"
        model = XCLIPModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on a spaghetti video
def prepare_video():
    file = hf_hub_download(
        repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_8_frames.npy", repo_type="dataset"
    )
    video = np.load(file)
    return list(video)


@require_vision
@require_torch
class XCLIPModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "microsoft/xclip-base-patch32"
        model = XCLIPModel.from_pretrained(model_name).to(torch_device)
        processor = XCLIPProcessor.from_pretrained(model_name)

        video = prepare_video()
        inputs = processor(
            text=["playing sports", "eating spaghetti", "go shopping"], videos=video, return_tensors="pt", padding=True
        ).to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        self.assertEqual(
            outputs.logits_per_video.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

        expected_logits = torch.tensor([[14.0181, 20.2771, 14.4776]], device=torch_device)

        torch.testing.assert_close(outputs.logits_per_video, expected_logits, rtol=1e-3, atol=1e-3)

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # XCLIP models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = XCLIPModel.from_pretrained("microsoft/xclip-base-patch32").to(torch_device)

        processor = XCLIPProcessor.from_pretrained(
            "microsoft/xclip-base-patch32", size=180, crop_size={"height": 180, "width": 180}
        )

        video = prepare_video()
        inputs = processor(text="what's in the video", videos=video, return_tensors="pt").to(torch_device)

        # interpolate_pos_encodiung false should return value error
        with self.assertRaises(ValueError, msg="doesn't match model"):
            with torch.no_grad():
                model(**inputs, interpolate_pos_encoding=False)
        # forward pass
        with torch.no_grad():
            outputs = model(**inputs, interpolate_pos_encoding=True)

        # verify the logits
        expected_shape = torch.Size((8, 26, 768))

        self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape)

        expectations = Expectations(
            {
                (None, None): [[0.0126, 0.2109, 0.0609], [0.0448, 0.5862, -0.1688], [-0.0881, 0.8525, -0.3044]],
                ("cuda", 8): [[0.0126, 0.2109, 0.0609], [0.0448, 0.5862, -0.1688], [-0.0881, 0.8525, -0.3044]],
            }
        )
        expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
        torch.testing.assert_close(
            outputs.vision_model_output.last_hidden_state[0, :3, :3], expected_slice, rtol=2e-4, atol=2e-4
        )
