# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch YOLOS model."""

import unittest
from functools import cached_property

from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import YolosForObjectDetection, YolosModel


if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class YolosModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=[30, 30],
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        n_targets=8,
        num_detection_tokens=10,
        attn_implementation="eager",
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
        self.n_targets = n_targets
        self.num_detection_tokens = num_detection_tokens
        self.attn_implementation = attn_implementation
        # we set the expected sequence length (which is used in several tests)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
        num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size)
        self.expected_seq_len = num_patches + 1 + self.num_detection_tokens

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])

        labels = None
        if self.use_labels:
            # labels is a list of Dict (each Dict being the labels for a given example in the batch)
            labels = []
            for i in range(self.batch_size):
                target = {}
                target["class_labels"] = torch.randint(
                    high=self.num_labels, size=(self.n_targets,), device=torch_device
                )
                target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
                labels.append(target)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return YolosConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
            num_detection_tokens=self.num_detection_tokens,
            num_labels=self.num_labels,
            attn_implementation=self.attn_implementation,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = YolosModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)
        )

    def create_and_check_for_object_detection(self, config, pixel_values, labels):
        model = YolosForObjectDetection(config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values=pixel_values)
        result = model(pixel_values)

        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))

        result = model(pixel_values=pixel_values, labels=labels)

        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1))
        self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"image-feature-extraction": YolosModel, "object-detection": YolosForObjectDetection}
        if is_torch_available()
        else {}
    )

    test_resize_embeddings = False
    test_torch_exportable = True

    # special case for head model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "YolosForObjectDetection":
                labels = []
                for i in range(self.model_tester.batch_size):
                    target = {}
                    target["class_labels"] = torch.ones(
                        size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
                    )
                    target["boxes"] = torch.ones(
                        self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
                    )
                    labels.append(target)
                inputs_dict["labels"] = labels

        return inputs_dict

    def setUp(self):
        self.model_tester = YolosModelTester(self)
        self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="YOLOS does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_get_set_embeddings(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # in YOLOS, the seq_len is different
        seq_len = self.model_tester.expected_seq_len
        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class._from_config(config, attn_implementation="eager")
            config = model.config
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # YOLOS has a different seq_length
            seq_length = self.model_tester.expected_seq_len

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_object_detection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_object_detection(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model_name = "hustvl/yolos-small"
        model = YolosModel.from_pretrained(model_name)
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class YolosModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None

    @slow
    def test_inference_object_detection_head(self):
        model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device)

        image_processor = self.default_image_processor
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(inputs.pixel_values)

        # verify outputs
        expected_shape = torch.Size((1, 100, 92))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice_logits = torch.tensor(
            [[-23.7219, -10.3165, -14.9083], [-41.5429, -15.2403, -24.1478], [-29.3909, -12.7173, -19.4650]],
            device=torch_device,
        )
        expected_slice_boxes = torch.tensor(
            [[0.2536, 0.5449, 0.4643], [0.2037, 0.7735, 0.3672], [0.7692, 0.4056, 0.4549]], device=torch_device
        )
        torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice_logits, rtol=1e-4, atol=1e-4)
        torch.testing.assert_close(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, rtol=1e-4, atol=1e-4)

        # verify postprocessing
        results = image_processor.post_process_object_detection(
            outputs, threshold=0.3, target_sizes=[image.size[::-1]]
        )[0]
        expected_scores = torch.tensor([0.9991, 0.9801, 0.9978, 0.9875, 0.9848]).to(torch_device)
        expected_labels = [75, 75, 17, 63, 17]
        expected_slice_boxes = torch.tensor([331.8438, 80.5440, 369.9546, 188.0579]).to(torch_device)

        self.assertEqual(len(results["scores"]), 5)
        torch.testing.assert_close(results["scores"], expected_scores, rtol=1e-4, atol=1e-4)
        self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
        torch.testing.assert_close(results["boxes"][0, :], expected_slice_boxes)
